
1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

1 of 11 22/01/2007 10:58

1.1. Introduction
Databases are pervasive in modern society. So many of our actions and attributes are logged and stored in
organised information repositories, or Databases.

1.1.01. Databases
Where do we come into contact with databases?
Supermarket inventories/EPOS

Supplies, shopping habits, store locations, accounts
Films (iMDB)

Cast lists, shooting schedules, histories, budgets
Department

Students, courses, staff, payroll

These are all examples of relatively simple databases. All of the information is textual or referential.

1.1.02. New technologies
Not just traditional, numeric/textual
Research 70s biased
Digital media

Video servers (atom/bbc/youtube)
Multimedia databases

Web site, collection of diverse data types
Google, AltaVista

Stock Exchange
Futures, Currency markets, trends
Databases comprising not only data, but modelling algortihms

Microsoft's WinFS

Databases don't have to store just text. Increasingly Database servers are storing, indexing and delivering
rich-media content, explicitly images, audio and video.

Microsoft's next generation File storage system (WinFS) is a relational database. From a user perspective,
searching (the process of indexing content by keyword) is already mainstream. Users are moving away from
rigid directory structures (files and folders) and towards keyword-tagged content.

1.1.03. Variations
Not only in role
Size

Video server example



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

2 of 11 22/01/2007 10:58

Complexity
Ford Puma™ example
Ford staff organised by production line and car
e.g. Each staff member answers to a 'part' manager (engines, bodyshell, chassis) and a 'car' 
manager (Puma, Mondeo, Ka)

Expense
User profiles and demands

We've seen that databases are used in a variety of contexts. Those roles imply properties of each of the
systems. An interlinked text-only database (such as Unix/Linux's MAN pages) will require much less storage
than a video archive.

Some databases are perceptually more complex. Ford's staff management model would be represented as a
matrix (in this case 2 dimensional). Computers are very good at organising multi-dimensional space.

1.1.04. Definition
Embrace diversity
Data and semantic
Database: related data, implicit meaning
Sample/subset of real world

real world with bounds
Miniworld/Universe of Discourse

A single definition of a database is hard to come by. Dictionary.com defines a database as: a comprehensive 
collection of related data organized for convenient access, generally in a computer. The Wikipedia definition
runs for several pages.

1.1.05. Abstraction
Previous lab exercises

Problem: reading data from a file
Abstraction theme
Basis of good OOP and further good P

from encapsulation to software component analysis
Layering, splitting data from design

Solution: grammar (language guide) and data

In some of your previous lab assignments, or practical experience, you may have been faced with the problem
of caching information persistently in a file, later to be reloaded.

When writing the data into the file, we are storing more than just that information. We are storing implicitly a
design/grammar for that data. That implicit design is evident when accessing the file with a naive interface. If
you try to read the data out in a different order, it fails.

A better solution is to split the way the information is stored from the actually information stored.



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

3 of 11 22/01/2007 10:58

1.1.06. Data-design divide
Left-hand/right-hand divide
LHS: Catalog

or Meta-data
or Intension
or Schema
i.e. the Design of database
Types of data, organisation, constraints

RHS: Extension
or Snapshot
The data itself
Information stored in the database
Tuples

1.1.07. DBMS
DataBase
Management
System
Collection of programs that enable users to:

Define - patterns, boundaries, design
Construct - populate to go live
Manipulate - runtime changes

data in a structured, organised store.

1.1.08. Database Management Systems
Properties



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

4 of 11 22/01/2007 10:58

Data models and independence
Requirements
Categorisation of Database users

DBMS components
Architecture

When considering the database systems as a whole, we need to look at all the components, including elements
that interact with the DBMS (users, whom we categorise for simplicity).

This course will contain a discussion of the components that make up the system and the way they interact 
(system architecture).

1.1.09. Models
Data models
Relational data model (Oracle)
Object data model (ObjectStore)
Legacy systems

Hierarchical data model
Network data model

A data model is an invention. It is a construct that allows us to share an understanding of how the system
works. As with all good constructs, it's an abstraction; a simplification; a story.

In this course we're going to look at the Relational model, where the database is organised into tables 
(relationals) and each row (tuple) within that relation is coded (keyed) to allow referencing between the 
relationals. 

The Relational model, inspite of being innovated in the 1970s is still the most popular, underpining 
mainstream modern databases such as Oracle 10i and MySQL 5.0

As programming languages are becoming increasingly Object orientated, programmers require a means of 
persistently storing their Objects. Object Orientated Databases (OODBs) exist to fulfil this purpose. OODBs
may ultimately replace relational databases, but it's not clear at this stage when.

1.1.10. Other properties
Beside Data model
Number of users
Number of sites
Cost
Types of access paths
Generality, or inversely specificity

MySQL is a highly general database system, in that it supports many different designs. My mobile phone
address book is a highly specific database system and as such is not easily extensible.



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

5 of 11 22/01/2007 10:58

1.1.11. Independence
Based on File processing
Data definition implicit in

Data
Application program

Example of one specific database
Structure embedded into access program

Coursework code re-use example

Earlier I made mention of this problem. Databases tie into the wider Software Engineering field. Within
Software Engineering, post-development issues of code re-use, maintenance, future evolution etc. necessitate 
a logical flexible approach to program design. Databases are such an approach. In order to store information
in a database you invest a small amount of time in explicitly structuring it, however you then get things like 
flexibility (data independence etc.) for free.

1.1.12. Program-data independence
General databases

Separate Data definition and data
Catalog/meta-data & tuples

Data format/structure stored separately
Program-data independence (e.g. Y2K)

Changes in data format
Alter data (tuples)
Alter grammar (catalog/meta-data)

We actually split program-data independence into:
Logical
Physical

...more in a second

1.1.13. Program-operation independence
In object-orientated databases

Objects consist of attributes and operations
Operation defined by

Header/Interface/Prototype or Signature
Implementation

Program-operation independence
Implementation change hidden from user

Collectively data abstraction

1.1.14. Logical and physical program-data 
independence



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

6 of 11 22/01/2007 10:58

Three tier data-model diagram
Mappings, Data independence

Logical
between conceptual and external
changes to conceptual without changing

external schemas or application programs
Physical

between internal and conceptual
changes to internal without changing

conceptual or external schemas

1.1.15. DBMS Requirements
DataBase Management System

Abstraction (i.e. program-data independence)
Conceptual representation (data models)
Multiple views and User Interfaces
Data sharing and transaction processing
Access restriction
Redundancy removal/optimisation
Persistent storage (Program objects) & Integrity
Relationship management & Inference
Backup and recovery

Here's a summary of what we need from a DBMS

1.1.16. Database Users
Database as 1y resource, DBMS as 2y
Database administrators (DBA)
Database designers
End users

Naïve - canned transactions e.g. bank/airline
Sophisticated - engineers, scientists, query editors
Stand-alone (personal databases/MS Access)

1.1.17. Results of use
Knock-on effects of database approach
Enforcing standards
Reduced Development time
Adaptive to change (design changes)
Up-to-date information (live database)
Economies of scale

centralising commonly required resources



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

7 of 11 22/01/2007 10:58

...and this is what you get for free. These are the consequences, largely positive, of adopting a database
approach to an information storage problem.

1.1.18. Design side
Meta-data

Database schema, intension
Data Model
Left hand side of database divide

Schema diagram
Entity-relationship (ER diagrams)
UML diagrams

1.1.19. Data side
Data, under the column heading
Less easy to look at (volume issue)
Fundamentally less interesting (more specific)
Variety of tools for looking at it:

HeidiSQL, PhpMyAdmin, Sword
Here's what a snapshot looks like:



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

8 of 11 22/01/2007 10:58

1.1.20. Data model
Data model

Structure of the database
Collection of basic operations
Collection of behaviours/user defined operations

Dependent on level of abstraction
Tier diagram

External (user views)
Conceptual*
Internal

1.1.20. General data model terms
Entity
Relationship
Attributes
Keys

What follows here is an introduction to the terms which make up the language that we use to describe data 
models.

1.1.21. Entity
Selected from real world
Populate Miniworld/UoD
Entity is an approximation
Two elements: Entity types and sets
Collection of attributes

Object similarity, classes as entity types
Entities inter-relate



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

9 of 11 22/01/2007 10:58

1.1.22. Attributes
Data type, domain
Simple or composite
Single or multivalued
Stored or derived
Null

1.1.23. Keys
Mechanism for unique identification
Uniqueness constraint
Strong and weak entities
Key attribute
Composite keys
Multiple keys

1.1.27. Relationships
Types and Sets
Participation by Entities
Degree - e.g. binary
Cardinality ratios - e.g. 1:1, 1:M

Determine occurrence
Tuples example

Foreign keys



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

10 of 11 22/01/2007 10:58

1.1.28. Database architecture
Client-Server
Distributed databases

Fragmentation by attribute/tuple/relation
Language and description

Storage Definition Language (SDL) DESIGN
Data Definition Language (DDL) DESIGN
View Definition Language (VDL) DESIGN
Data Manipulation Language (DML) DATA

High level, can be embedded but precompiled
Procedural, record-at-a-time, requires high level support



1.1. Introduction http://www.lightenna.com/book/export/s5/68/theme_cs

11 of 11 22/01/2007 10:58

1.1.29. Structured Query
Structured Query Language (SQL or SEQUEL)
Success of relational databases

Developed for SystemR at IBM
ANSI standardised

SQL1 or SQL-86, ongoing extension
SQL2 or SQL-92, current version
SQL3 (1999), SQL2003
DDL, DML(low-level) and VDL


