
2.2. Internals http://www.lightenna.com/book/export/s5/154

1 of 7 16/02/2007 08:42

2.2. Internals
In this lecture we look at...

2.2.01. Introduction
Database internals (base tier)
RAID technology

Reliability and performance improvement
Record and field basics
Headers to hashing
Index structures

2.2.01b. Machine architecture (by distance)
Distance from chip determines minimum latency
Speed of light is a constant
Impact of bus frequencies

IDE (66,100,133 Hz)
PCI, PCI-X (66,100,133 Hz)
PCI Express (1Ghz to 12Ghz)

Impact of bus bandwidths
PCI (32/64 bit/cycle, 133MB/s)
PCI Express (x16 8.0GB/s)

Here's a link from Intel showing a machine architecture with signal bandwidths: Intel diagram

2.2.01c. Machine architecture (by capacity)



2.2. Internals http://www.lightenna.com/book/export/s5/154

2 of 7 16/02/2007 08:42

Capacity increased with distance
Staged architecture as compromise
Speed, time/distance
Also cost, heat, usage scale

2.2.02. Database internals
Stored as files of records (of data values)

Auxiliary data structures/indices
1y and 2y storage

memory hierarchy (pyramid diagram)
volatility

Online and offline devices
Primary file organisation, records on disk

Heap - unordered
Sorted - ordered, sequential by sort key
Hashed - ordered by hash key
B-trees - more complex

2.2.03. Disk fundamentals
DBMS task

linked to backup
1y, 2y and 3y

e.g. DLT tape
Changing face of current technology

Impact of inexpensive harddisks
Flash memory devices (CF, USB)

Random versus sequential access
Latency (rotational delay) and
Bandwidth (data transfer rate)

2.2.04. RAID technology
Redundant Array of Independent Disks



2.2. Internals http://www.lightenna.com/book/export/s5/154

3 of 7 16/02/2007 08:42

Data striping
Blocks (512 bytes), bits and transparency

Reliability (1/n)
Mirroring/shadowing
Error correction codes/parity

Performance (n)
Mirroring (2x read access)
Multiple parallel access

2.2.05. RAID levels
0 No redundant data
1 Disk mirrors (performance gain)
2 Hamming codes (also detect)
3 Single parity disk
4 Block level striping
5 and parity/data distribution
6 Reed-Soloman codes

2.2.06. Records and fields
DBMS specific, generally
Records (tuples) comprise fields (attributes)
File is a sequence of records
Variable length records

Variable length fields
Multi-valued attributes/repeating fields
Optional fields
Mixed file of different record types

2.2.07. Fields
records -> files -> disks
Fixed length for efficient access
Networking issues
Delimit variable length fields (max)
Explicit record/field lengths
Separators (,;,:,$,?,%)
Record headers and footers
Spanning

block boundaries and redundancy

2.2.08. Primary organisation



2.2. Internals http://www.lightenna.com/book/export/s5/154

4 of 7 16/02/2007 08:42

Bias data manipulation to 1y memory
Load record to 1y, write back
Cache theorem

Data storage investment, rapidity of access
optimisations based on frequent algorithmic use

Ordering, ordering field/key field
Hashing

2.2.09. Indexes/indices
Auxiliary structures/secondary access path
Single level indexes (Key, Pointer)
File of records
Ordering key field
Primary, Secondard and Clustering

2.2.09b. Primary index example
Primary index on simple table
Ordering key field (primary key) is Integer
Pointers as addresses
Sparse, not dense

2.2.10. Primary Index file (as pairs list)
Two fields <K(i),P(i)>
Ordering key field and pointer to block
Second example, indexing candidate key Surname

K(1)="Barnes",P(1) -> block 1
Barnes record is first/anchor entry in block 1

K(2)="Smith",P(2) -> block 6
K(3)="Zeta",P(3) -> block 8

Dense (K(i) for every record), or Sparse
Enforce key constraint



2.2. Internals http://www.lightenna.com/book/export/s5/154

5 of 7 16/02/2007 08:42

2.2.10b. Clustering index example
Clustering index
Ordering key field (OKF) is non-key
Each entry points to multiple records

2.2.11. Clustering Index (as pairs list)
Two fields <K(i),P(i)>
Ordering non-key field and pointer to block

Internal structure e.g. linked list of records
Each block may contain multiple records

K(1)="Barnes",P(1) -> block 1
K(2)="Bates",P(2) -> block 2
K(3)="Zeta",P(3) -> block 3

K(i) not required to have
a distinct value for each record
non-dense, sparse

2.2.11b. Secondary Index example
Independent of primary ordering
Can't use block anchors
Needs to be dense



2.2. Internals http://www.lightenna.com/book/export/s5/154

6 of 7 16/02/2007 08:42

2.2.12. More indices
Single level index

ordered index file
limited by binary search

Multi level indices
based on tree data structures (B+/B-trees)

faster reduction of search space (logfobi)

2.2.13. Indices
Database architecture

Intension/extension
Indexes separated from data file

Created/disgraded dynamically
Typically 2y to avoid reordering records on disk

2.2.14. Query optimisation
Faster query resolution

improved performance
lower load
hardware cost:performance ratio

Moore's law
Query process chain
Query optimisation

2.2.15. Query processing
Compile-track familiarity

Scanner/tokeniser - break into tokens
Parser - semantic understanding, grammar
Validated - check attribute names

Query tree
Execution strategy, heuristic

Query optimisation
In (extended relational) canonical algebra form

2.2.16. Query optimisation
SQL query

SELECT lname, fname
FROM employee



2.2. Internals http://www.lightenna.com/book/export/s5/154

7 of 7 16/02/2007 08:42

WHERE salary > (
SELECT MAX(salary)
FROM employee
WHERE dno=5

);
Worst-case

Process inner for each outer
Best-base
Canonical algrebraic form

2.2.16b. Query optimisation implementation
Indexing accelerates query resolution
Closed comparison (intra-tuple)

all variables/attributes within single tuple
e.g. x < 100

Open comparison (inter-tuple)
variables span multiple tuples

Essentially a sorting problem
Internal sorting covered (pre-requisites)
Need external sort for non-cached lists

2.2.17. Query optimisation
External sorting

Stems from large disk (2y), small memory (1y)
Sort-merge strategy

Sort runs (small sets of total data file)
Then merge runs back together

Used in
SELECT, to accelerate selection (by index)
PROJECT, to eliminate duplicates
JOIN, UNION and INTERSECTION


