3.1. Functional Dependency

In this lecture we look at... [Section notes PDF 64Kb]

3.1.01. Introduction

- What is relational design?
 - $\circ~$ Notion of attribute distribution
 - \circ Conceptual-level optimisation
- How do we asses the quality of a design?

3.1.02. Value in design

- Allocated arbitrarily by DBD under ER/EER
- Goodness at
 - Internal/storage level (base relations only)
 - Reducing nulls obvious storage benefits /frequent
 - Reducing redundancy for efficient storage/anomalies
 - Conceptual level
 - Semantics of the attributes /single entity:relation
 - No spurious tuple generation /no match Attr,-PK/FK

3.1.03. Initial state

- Database design
- Universal relation
 - $R = \{A_1, A_2, ..., A_n\}$
 - Set of functional dependencies F
- Decompose R using F to
 - $D = \{R_1, R_2, ..., R_n\}$
 - $\circ\,$ D is a decomposition of R under F

3.1.05. Aims

- Attribute preservation
 - \circ Union of all decomposed relations = original
- Lossless/non-additive join
 - $\circ~$ For every extension, total join of $r(R_i)$ yeilds r(R)
 - no spurious/erroneous tuples

3.1.06. Aims (preservation)

- Dependency preservation
 - $\circ\,$ Constraints on the database
 - X -> Y in F of R, appears directly in R_i
 - $\circ~$ Attributes X and Y all contained in R_{i}
 - $\circ~Each$ relation R_i in 3NF
- But what's a dependency?

3.1.07. Functional dependency

- Constraint between two sets of attributes
 - $\circ\,$ Formal method for grouping attributes
- DB as one single universal relation/-literal
 - $R = \{A_1, A_2, ..., A_n\}$
 - Two sets of attributes, X subset R,Y subset R
- Functional dependency (FD or f.d.) X -> Y
- If $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$
 - $\circ~$ Values of the Y attribute depend on value of X
 - $\circ\,$ X functionally determines Y, not reverse necessarily

3.1.08. Dependency derivation

- Rules of inference
- reflexive: if X implies Y then X -> Y
- augment: $\{X \rightarrow Y\}$ then XZ \rightarrow YZ
- transitive: {X -> Y,Y -> Z} then X -> Z
- Armstrong demonstrated complete for closures

3.1.09. Functional dependency

- If X is a key (primary and/or candidate)
 - $\circ~$ All tuples t_i have a unique value for X
 - $\circ~$ No two tuples (t1,t2) share a value of X
- Therefore X -> Y
 - $\circ\,$ For any subset of attributes Y
- Examples
 - SSN -> {Fname, Minit, Lname}
 - {Country of issue, Driving license no} -> SSN
 - Mobile area code -> Mobile
 - network (not anymore)

3.1.10. Process

- Typically start with set of f.d., F
 - $\circ\,$ determined from semantics of attributes
- Then use IR1,2,3 to infer additional f.d.s
- Determine left hand sides (Xs)
 - $\circ\,$ Then determine all attributes dependent on X
- For each set of attributes X,
 - $\circ~$ determine X+ :the set of attributes f.d'ed by X on F

3.1.11. Algorithm

- Compute the closure of X under F: X+
 - \circ xplus = x;
 - do
- oldxplus = xplus;
- for (each f.d. $Y \rightarrow Z$ in F)
 - if (xplus implies Y) then
 - xplus = xplus union Z;
- while (xplus != oldxplus);

3.1.12. Function dependency

- Consider a relation schema R(A,B,C,D) and a set F of functional dependencies
 - Aim to find all keys (minimal superkeys),
 - $\circ\,$ by determining closures of all possible X subsets of R's attributes, e.g.
 - A+, B+, C+, D+,
 - AB+, AC+, AD+, BC+, BD+, CD+
 - ABC+, ABD+, BCD+
 - ABCD+

3.1.13. Worked example

- Let R be a relational schema R(A, B, C, D)
- Simple set of f.d.s
- AB -> C, C -> D, D -> A
- Calculate singletons
 - A+, B+, C+, D+,
- Pairs
 - AB+, AC+,...
- Triples
 - \circ and so on

3.1.14. Worked example

• Compute sets of closures

- \circ AB -> C, C -> D, D -> A
- 1.Singletons
 - \circ A+ -> A
 - **B+ -> B**
 - \circ C+ -> CDA
 - D+ -> AD
- Question: are any singletons superkeys?

3.1.15. F.d. closure example

- 2.Pairs (note commutative)
 - \circ AB+ -> ABCD
 - AC+ -> ACD
 - AD+ -> AD
 - \circ BC+ -> ABCD
 - \circ BD+ -> ABCD
 - CD+ -> ACD
- Superkeys?

3.1.16. F.d. closure example

- 3.Triples
 - \circ ABC+ -> ABCD
 - ABD+ -> ABCD
 - BCD+ -> ABCD
- Superkeys? Minimal superkeys (keys)?
- 4.Quadruples
 - ABCD+ -> ABCD

3.1.17. F.d. closure summary

- Superkeys:
 - AB, BC, BD, ABC, ABD, BCD, ABCD
- Minimal superkeys (keys)
 - AB, BC, BD