
3. Database Design http://www.lightenna.com/book/export/s5/106

1 of 18 05/03/2007 07:37

3. Database Design
This is the Database Design course theme.
[Complete set of notes PDF 295Kb].

3.1. Functional Dependency
In this lecture we look at...
[Section notes PDF 64Kb]

3.1.01. Introduction
What is relational design?

Notion of attribute distribution
Conceptual-level optimisation

How do we asses the quality of a design?

3.1.02. Value in design
Allocated arbitrarily by DBD under ER/EER
Goodness at

Internal/storage level (base relations only)
Reducing nulls - obvious storage benefits /frequent
Reducing redundancy - for efficient storage/anomalies

Conceptual level
Semantics of the attributes /single entity:relation
No spurious tuple generation /no match Attr,-PK/FK

3.1.03. Initial state
Database design
Universal relation

R = {A1, A2, …, An}
Set of functional dependencies F

Decompose R using F to
D = {R1, R2, …, Rn}
D is a decomposition of R under F

3.1.05. Aims



3. Database Design http://www.lightenna.com/book/export/s5/106

2 of 18 05/03/2007 07:37

Attribute preservation
Union of all decomposed relations = original

Lossless/non-additive join
For every extension, total join of r(Ri) yeilds r(R)
no spurious/erroneous tuples

3.1.06. Aims (preservation)
Dependency preservation

Constraints on the database
X -> Y in F of R, appears directly in Ri

Attributes X and Y all contained in Ri
Each relation Ri in 3NF

But what's a dependency?

3.1.07. Functional dependency
Constraint between two sets of attributes

Formal method for grouping attributes
DB as one single universal relation/-literal

R = {A1,A2,…,An}
Two sets of attributes, X subset R,Y subset R

Functional dependency (FD or f.d.) X -> Y
If t1[X] = t2[X], then t1[Y] = t2[Y]

Values of the Y attribute depend on value of X
X functionally determines Y, not reverse necessarily

3.1.08. Dependency derivation
Rules of inference
reflexive: if X implies Y then X -> Y
augment: {X -> Y} then XZ -> YZ
transitive: {X -> Y,Y -> Z} then X -> Z
Armstrong demonstrated complete for closures

3.1.09. Functional dependency
If X is a key (primary and/or candidate)

All tuples ti have a unique value for X
No two tuples (t1,t2) share a value of X

Therefore X -> Y
For any subset of attributes Y

Examples
SSN -> {Fname, Minit, Lname}



3. Database Design http://www.lightenna.com/book/export/s5/106

3 of 18 05/03/2007 07:37

{Country of issue, Driving license no} -> SSN
Mobile area code -> Mobile
network (not anymore)

3.1.10. Process
Typically start with set of f.d., F

determined from semantics of attributes
Then use IR1,2,3 to infer additional f.d.s
Determine left hand sides (Xs)

Then determine all attributes dependent on X
For each set of attributes X,

determine X+ :the set of attributes f.d'ed by X on F

3.1.11. Algorithm
Compute the closure of X under F: X+

xplus = x;
do

oldxplus = xplus;
for (each f.d. Y -> Z in F)

if (xplus implies Y) then
xplus = xplus union Z;

while (xplus != oldxplus);

3.1.12. Function dependency
Consider a relation schema R(A,B,C,D) and a set F of functional dependencies

Aim to find all keys (minimal superkeys),
by determining closures of all possible X subsets of R’s attributes, e.g.

A+, B+, C+, D+,
AB+, AC+, AD+, BC+, BD+, CD+
ABC+, ABD+, BCD+
ABCD+

3.1.13. Worked example
Let R be a relational schema R(A, B, C, D)
Simple set of f.d.s
AB -> C, C -> D, D -> A
Calculate singletons

A+, B+, C+, D+,
Pairs

AB+, AC+,…



3. Database Design http://www.lightenna.com/book/export/s5/106

4 of 18 05/03/2007 07:37

Triples
and so on

3.1.14. Worked example
Compute sets of closures

AB -> C, C -> D, D -> A
1.Singletons

A+ -> A
B+ -> B
C+ -> CDA
D+ -> AD

Question: are any singletons superkeys?

3.1.15. F.d. closure example
2.Pairs (note commutative)

AB+ -> ABCD
AC+ -> ACD
AD+ -> AD
BC+ -> ABCD
BD+ -> ABCD
CD+ -> ACD

Superkeys?

3.1.16. F.d. closure example
3.Triples

ABC+ -> ABCD
ABD+ -> ABCD
BCD+ -> ABCD

Superkeys? Minimal superkeys (keys)?
4.Quadruples

ABCD+ -> ABCD

3.1.17. F.d. closure summary
Superkeys:

AB, BC, BD, ABC, ABD, BCD, ABCD
Minimal superkeys (keys)

AB, BC, BD

3.2. Normal Forms



3. Database Design http://www.lightenna.com/book/export/s5/106

5 of 18 05/03/2007 07:37

In this lecture we look at...
[Section notes PDF 121Kb]

3.2.01. Orthogonal design
Information Principle:

The entire information content of the database is represented in one and only one way, namely as 
explicit values in column positions in tables

Implies that two relations cannot have the same meaning
unless they explicitly have the same design/attributes (including name)

3.2.02. Normalization
Reduced redundancy
Organised data efficiently
Improves data consistency

Reduces chance of update anomalies
Data duplicated, then updated in only one location

Only duplicate primary key
All non-key data stored only once

Data spread across multiple tables, instead of one Universal relation R

3.2.03. Good or bad?
Depends on Application
OLTP (Transaction processing)

Lots of small transactions
Need to execute updates quickly

OLAP (Analytical processing/DSS)
Largely Read-only
Redundant data copies facilitate Business Intellegence applications, e.g. star schema (later)

3NF considered ‘normalised’
save special cases

3.2.04. Normal forms (1NF)
First Normal form (1NF)

Disallows multivalued attributes
Part of the basic relational model

Domain must include only atomic values
simple, indivisible

Value of attribute-tuple in extension of schema
t[Ai] � (Ai)



3. Database Design http://www.lightenna.com/book/export/s5/106

6 of 18 05/03/2007 07:37

3.2.05. Normalisation (1NF)
Remove fields containing comma separated lists
Multi-valued attribute (AMV) of Ri
Create new relation (RNEW)

with FK to Ri[PK]
RNEW(UID, AMV, FKI)

3.2.06. Normalisation (1NF)
On weak entity
On strong entity

3.2.07. Normal forms (2NF)
A relation Ri is in 2NF if:

Every nonprime attribute A in Ri is
fully functionally dependent on 1y key of R

If all keys are singletons, guaranteed
If Ri has composite key are

all non-key attributes fully functionally dependent
on all attributes of composite key?

3.2.08. Normal forms (2NF)
Second normal form (2NF)

Full functional dependency X � Y
A � X, (X - {A}) ¬� Y



3. Database Design http://www.lightenna.com/book/export/s5/106

7 of 18 05/03/2007 07:37

If any attribute A is removed from X
Then X � Y no longer holds

Partial functional dependency
A � X, (X - {A}) � Y

3.2.09. Normal forms (2NF)
In context

Not 2NF: AB � C, A � C
AB � C is not in 2NF, because B can be removed

Not 2NF: AB � CDE, B � DE
because attributes D&E are dependent on part of the composite key (B of AB), not all of it

3.2.10. Normalisation (2NF)
Split attributes not depended on all of the primary key into separate relations

3.2.11. Normal forms (BCNF)
Boyce-Codd Normal form (BCNF)

Simpler, stricter 3NF
BCNF � 3NF
3NF does not imply BCNF

nontrivial functional dependency X � Y
Then X must be a superkey

3.2.12. Normal forms (3NF)
Third Normal form (3NF)
Derived/based on transitive dependency
For all nontrivial functional dependencies
X � A
Either X must be a superkey
Or A is a prime attribute
(member of a key)



3. Database Design http://www.lightenna.com/book/export/s5/106

8 of 18 05/03/2007 07:37

3.2.13. Normal forms in context
AB � C, C � D, D � A
In context

3NF? Yes
Because AB is a superkey and
D and A are prime attributes

BCNF? No
Because C and D are not superkeys
(even though AB is)

3.2.14. Normalisation (3NF)
CarMakes not in 3NF because:

singleton key A
non-trivial fd B � C

B not superkey, C not prime attribute

3.3. OODB
In this lecture we look at...
[Section notes PDF 34Kb]

3.3.01. Introduction
Database architectures, beyond
Why OODBMS?
ObjectStore
CORBA object distribution standard

3.3.02. Large DBMS
Complex entity fragmentation



3. Database Design http://www.lightenna.com/book/export/s5/106

9 of 18 05/03/2007 07:37

across many relations
Breaks the miniworld-realworld dichotomy
Requires conceptual abstracting layer
Difficult to retrieve all information for x
Compounded by version control

3.3.03. Object orientation
Object components (icv triples)

Object Identity (OID), I
replaces primary key

Type constructor, c
how the object state is constructed from sub-comp
e.g. atom, tuple (struct), set, list, bag, array

Object state, v
Object behaviour/action

3.3.04. Desirable features
Encapsulation

Abstract data types
Information hiding

Object classes and behavior
Defined by operations (methods)

Inheritance and hierarchies
Strong typing (no illegal casting)

don’t think about inheritance just yet

3.3.05. Desirable features
Persistence

Objects exist after termination
Naming and reachability mechanism
Late binding in Java

Performance
user-def functions executed on server, not client

Extension into relational model
Domains of objects, not just values
Domain hierarchies etc.

3.3.06. Desirable features
Polymorphism

aka. operator overloading



3. Database Design http://www.lightenna.com/book/export/s5/106

10 of 18 05/03/2007 07:37

same method name/symbol
multiple implementations

Easy link to Programming languages
popular OO language like Java/C++
Better than PL/SQL integration
Much better than PL-JDBC integration!

Highly suitable for multimedia data

3.3.07. Undesirable features
Object Ids

Artificial Real-Mini, double edged sword
Exposes inner workings (suspended abstraction)

Lack of integrity constraints
No concept of normalisation/forms
Extreme encapsulation

e.g. creation of many accessor/mutator methods
Lack of (better) standardisation

3.3.08. More undesirables
Originally no mechanism for specifying
relationships between objects
In RDBMS – relationships are tuples
In OODBMS – relationships should be properties of objects

3.3.09. ObjectStore
Packages supporting Java or C++
C++ package uses:

C++ class definition for DDL
insert(e), remove(e) and create collections, for DML

Bidirectional relationship facility
Persistency transparency

Identical pointers to persistent and transient objects

3.3.10. CORBA
Common Object Request Broker Architecture
Object communication (unifying paradigm)

Distributed
Heterogeneous
Network, OS and language transparency

Java implementation org.omg.CORBA



3. Database Design http://www.lightenna.com/book/export/s5/106

11 of 18 05/03/2007 07:37

Also C, C++, ADA, SMALLTALK

3.4. Type Inheritance and EER diagrams
In this lecture we look at...
[Section notes PDF 117Kb]

3.4.01. Introduction
Design/schema side (Entity types)
Object-orientated concepts

Java, C++ or UML
Sub/superclasses and inheritance

EER diagrams
EER to Relational mapping

3.4.02. OO
Inheritance concept

Attributes (and methods)
Subtypes and supertypes
Specialisation and Generalisation
ER diagrams

show entities/entity sets
EER diagrams

show type inheritance

additional 8th step to ER�Relational mapping

3.4.03. Objects
Basic guide to Java
Object, classes as blueprints
Object, collection of methods and attributes
Miniworld model of real world things
Object, entity in database terms

3.4.04. Abstract
Similar objects
Car Park example
Student example
Shared properties/attributes
Generalisation



3. Database Design http://www.lightenna.com/book/export/s5/106

12 of 18 05/03/2007 07:37

Reverse, specialisation

3.4.05. Relationships
Using English as model
‘Is a’ (inheritance)
‘Has a’ (containment)
Nouns as objects
Verbs as methods
Adjectives as variables (sort of)

3.4.06. Classes
Superclasses (Student)
Subclasses (Engineer, Geographer, Medic)
Inheritance
Subclass inherits superclass attributes

Union of specific/local and general attributes
Inheritance chains

Person � Student � Engineer � Computer Scientist

3.4.07. EER Fruit example
Partial participation
Disjoint subclasses
A fruit may be either a pear or an apple or a banana, or none of them. A fruit may not be a pear and a
banana, an apple and a banana, an apple and a pear …

3.4.08. EER Wine example
Total, disjoint
Equivalent to Java Abstract classes
A Wine has to be either Red, White or Rosé cannot be both more



3. Database Design http://www.lightenna.com/book/export/s5/106

13 of 18 05/03/2007 07:37

3.4.09. More extended (EER)
Specialisation lattices

and Hierarchies
Multiple inheritance
Union of two superclasses (u in circle)
In addition to basic ER notation

3.4.10. EER diagramatic notation
Subset symbol to illustrate
sub/superclass relationship
direction of relationship
Circle to link super to subclasses

Disjoint
Overlapping
Union

3.4.11. Disjointness constraint
Disjointness (d in circle) – single honours
Overlapping (o in circle) – joint honours/sports
Membership condition on same attribute

attribute-defined specialisation
defining attribute
implies disjointness

versus user-defined
each entity type specifically defined by user

3.4.12. Completeness constraint
Total specialisation

Every entity in the superclass must be a member of atleast 1 subclass
Double line (as ER)



3. Database Design http://www.lightenna.com/book/export/s5/106

14 of 18 05/03/2007 07:37

Partial specialisation
Some entites may belong to atleast 1 subclass, or none at all
Single line

Yields 4 possibilities
(Total-Dis, Total-Over, Partial-Dis, Partial-Over)

3.4.13. EER Chip example
Total, overlapping
A Chip may has to be at least one of FPA Unit, Reg Block, L1 Cache, and may be more than one type

3.4.14. EER Multiple inheritance
Type hierarchies
Specialisation lattices
Well, sir, the Supreme Court of the United States has determined that the tomato is for legal and 
commercial purposes both a fruit and a vegetable. So we can legally refer to tomato juice as 
'vegetable' juice.
Candice, General Foods



3. Database Design http://www.lightenna.com/book/export/s5/106

15 of 18 05/03/2007 07:37

3.4.15. EER to Relational Mapping
Initially following 7 ER stages
Stage 8
4 different options

Optimal solution based on problem
Let C be superclass, S1..m subclasses

3.4.16. Stage 8
Create relation for C, and relations for S1..m each with a foreign key to C (primary key)
Create relations for S1..m each including all attributes of C and its primary key

3.4.17. Stage 8
Create a single relation including all attributes of C � S1..m and a type/discriminating attribute

only for disjoint subclasses
Create a single relation as above, but include a boolean type flag for each subclass

works for overlapping, and also disjoint

3.5. System Design
In this lecture we look at...
[Section notes PDF 64Kb]

3.5.01. Databases in Application
Where’s the data?
Programmer driven future



3. Database Design http://www.lightenna.com/book/export/s5/106

16 of 18 05/03/2007 07:37

OODBMS limitations
RDBMS longevity
System design by

Data store, delivery, interface
Case study

3.5.02. Where’s the data?
Previously covered distance from User to Data (and reason for it)
Client-Server data model creates DBMS

P2P alternative
Accountability
Distribution (BitTorrent, eDonkey)
Caching

3.5.03. Where’s the data?
Answer: everywhere
But where is it meaningful?
Answer: for whom?

3.5.04. Quality paradigm
Large projects require large teams
Team overhead (ref 2nd year)
Code responsibilities
Data/data model resp.
Object responsibilities



3. Database Design http://www.lightenna.com/book/export/s5/106

17 of 18 05/03/2007 07:37

3.5.05. Web application data support
Web application programming
Goal, dynamically produced XHTML
Client side designer-programmer split

CSS, XHTML
Server side programmer-programmer split

Old school: query design, integrator
New school: MVC (Model-View-Controller)

Controller – user input
Model – modelling of external world
View – visual feedback

3.5.06. CMS
Content Management System
part of other courses
CMS is a DBMS
Zope/Plone and ZODB
e107, Drupal and Seagull
Zend MVC Framework (pre-beta)

3.5.07. OODBMS limitations



3. Database Design http://www.lightenna.com/book/export/s5/106

18 of 18 05/03/2007 07:37

Future unknown
RDBMS supports

Application data sharing
Physical/logical data independence/views
Concurrency control
Constraints

at inception these requirements not known
RDBMS mathematical basis � extensible
Crude Type Inheritance (see EER mapping)
OODBMS as construction kit

3.5.08. Weaknesses in RDBMS
Data type support
Unwieldy, created 3VL (nulls)
Type Inheritance and Relationships
Tuple:Entity fragmentation

not to be confused with ‘fragmentation’
Entity approximation requires joins

3.5.09. System design
Client specifications
Variance amongst Mobile devices
Rich-media Content delivery
Where’s the data? (M – media database)
Where’s it going? (C – mobile browser)
How’s it going to get there? (query design)
What’s it going to look like? (V – XHTML)

3.5.10. Muddy boots
The real world of databases
Massive Excel spreadsheets
Access Migration
Normalisation
Update implications
Visual language of the Internet limitations
Future of browser components


