
4.2. Concurrency protocols
In this lecture we look at...
[Section notes PDF 37Kb]

4.2.01. Introduction
� Concurrency control protocols
� Concurrency techniques

� Locks, Protocols, Timestamps
� Multimode locking with conversion

� Guarenteeing serializability
� Associated cost
� Timestamps and ordering

4.2.02. Guarenteeing serializability
� Two phase locking protocol (2PL)

� Growing/expanding
� Acquisition of all locks
� Or upgrading of existing locks

� Shrinking
� Release of locks
� Or downgrading

� Guarentees serializability
� equivalency without checking schedules

4.2.03. A typical transaction pair

� Violates rules of two phase locking
� unlock occurs during locking/expanding phase

T1

read_lock(Y);
read_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X=X+Y;
write_item(X);
unlock(X);

T2

read_lock(X);
read_item(X);
unlock(X);

write_lock(Y);
read_item(Y);
Y=X+Y;
write_item(Y);
unlock(Y);

Page 1 of 44.2. Concurrency protocols

16/03/2007http://www.lightenna.com/book/export/s5/161

4.2.04. 2PL: Guaranteed serializable

� Less efficient (cost), but serializable

4.2.05. Guarantee cost
� T2 ends up waiting for read access to X

� Either after T1 finished
� T1 cannot release X even though it has finished using it
� Incorrect phase (still expanding)

� Or before T1 has used it
� T1 has to claim X during expansion, even if it doesn’t use

it until later
� Cost: limits the amount of concurrency

4.2.06. Alternatives
� Concurrency control

� Locks limit concurrency
� Busy waiting

� Timestamp ordering (TO)
� Order transaction execution

� for a particular equivalent serial schedule
� of transactions ordered by timestamp value

� Note: difference to lock serial equivalent
� No locks, no deadlock

4.2.07. Timestamps
� Unique identifier for transaction (T)
� Assigned in order of submission

� Time
� linear time, current date/sys clock - one per cycle

� Counter
� counter, finite bitspace, wrap-around issues

T1

read_lock(Y);
read_item(Y);
write_lock(X);
unlock(Y);
read_item(X);
X=X+Y;
write_item(X);
unlock(X);

T2

read_lock(X);
read_item(X);
write_lock(Y);
unlock(X);
read_item(Y);
Y=X+Y;
write_item(Y);
unlock(Y);

Page 2 of 44.2. Concurrency protocols

16/03/2007http://www.lightenna.com/book/export/s5/161

� Timestamp aka. Transaction start time
� TS(T)

4.2.08. Timestamping
� DBMS associates two TS with each item

� Read_TS(X): gets read timestamp of item X
� timestamp of most recent successful read on X
� = TS(T) where T is youngest read transaction

� Write_TS(X): gets write timestamp of item X
� as for read timestamp

4.2.09. Timestamping
� Transaction T issues read_item(X)

� TO algorithm compares TS(T) with Write_TS(X)
� Ensures transaction order execution not violated

� If successful,Write_TS(X) <= TS(T)
� Read_TS(X) = MAXTS(T), current Read_TS(X)

� If fail,Write_TS(X) > TS(T)
� T aborted, rolled-back and resubmitted with new TS
� Cascading rollback

4.2.10. Timestamping
� Transaction T issues write_item(X)

� TO algorithm compares TS(T) with Read_TS(X) and compares TS(T) with Write_TS
(X)

� If successful, op_TS(X) <= TS(T)
� Write_TS(X) = TS(T)

� If fail, op_TS(X) > TS(T)
� T aborted, cascade etc.

� All operations focus on not violating the execution order defined by the timestamp ordering

4.2.11. Updates
� Insertion

� 2PL: DBMS secures exclusive write-lock
� TOA: op_TS(X) set to TS(creating transaction)

� Deletion
� 2PL: as insert
� TOA: waits to ensure later transactions don’t access

Page 3 of 44.2. Concurrency protocols

16/03/2007http://www.lightenna.com/book/export/s5/161

� Phantom problem
� Record being inserted matches inclusion conditions
� of another transaction

(e.g. selection by dno=5)
� Locking doesn’t guarantee inclusion

(need index locking)

Page 4 of 44.2. Concurrency protocols

16/03/2007http://www.lightenna.com/book/export/s5/161

