3.1. Functional Dependency

In this lecture we look at...
[Section notes PDF 64Kb]

3.1.01. Introduction

- What is relational design?
 - Notion of attribute distribution
 - Conceptual-level optimisation
- How do we assess the quality of a design?

3.1.02. Value in design

- Allocated arbitrarily by DBD under ER/EER
- Goodness at
 - Internal/storage level (base relations only)
 - Reducing nulls - obvious storage benefits /frequent
 - Reducing redundancy - for efficient storage/anomalies
 - Conceptual level
 - Semantics of the attributes /single entity:relation
 - No spurious tuple generation /no match Attr,-PK/FK

3.1.03. Initial state

- Database design
- Universal relation
 - $R = \{A_1, A_2, \ldots, A_n\}$
 - Set of functional dependencies F
- Decompose R using F to
 - $D = \{R_1, R_2, \ldots, R_n\}$
 - D is a decomposition of R under F

3.1.05. Aims

- Attribute preservation
 - Union of all decomposed relations = original
- Lossless/non-additive join
 - For every extension, total join of $r(R_i)$ yeilds $r(R)$
 - no spurious/erroneous tuples
3.1.06. Aims (preservation)

- Dependency preservation
 - Constraints on the database
 - \(X \rightarrow Y \) in \(F \) of \(R \), appears directly in \(R_i \)
 - Attributes \(X \) and \(Y \) all contained in \(R_i \)
 - Each relation \(R_i \) in 3NF
 - But what's a dependency?

3.1.07. Functional dependency

- Constraint between two sets of attributes
 - Formal method for grouping attributes
- DB as one single universal relation/-literal
 - \(R = \{ A_1, A_2, \ldots, A_n \} \)
 - Two sets of attributes, \(X \) subset \(R \), \(Y \) subset \(R \)
- Functional dependency (FD or f.d.) \(X \rightarrow Y \)
 - If \(t_1[X] = t_2[X] \), then \(t_1[Y] = t_2[Y] \)
 - Values of the \(Y \) attribute depend on value of \(X \)
 - \(X \) functionally determines \(Y \), not reverse necessarily

3.1.08. Dependency derivation

- Rules of inference
- reflexive: if \(X \) implies \(Y \) then \(X \rightarrow Y \)
- augment: \(\{ X \rightarrow Y \} \) then \(XZ \rightarrow YZ \)
- transitive: \(\{ X \rightarrow Y, Y \rightarrow Z \} \) then \(X \rightarrow Z \)
- Armstrong demonstrated complete for closures

3.1.09. Functional dependency

- If \(X \) is a key (primary and/or candidate)
 - All tuples \(t_1 \) have a unique value for \(X \)
 - No two tuples \((t_1, t_2) \) share a value of \(X \)
- Therefore \(X \rightarrow Y \)
 - For any subset of attributes \(Y \)
- Examples
 - \(\text{SSN} \rightarrow \{ \text{Fname, Minit, Lname} \} \)
 - \(\{ \text{Country of issue, Driving license no} \} \rightarrow \text{SSN} \)
 - \(\text{Mobile area code} \rightarrow \text{Mobile network (not anymore)} \)

3.1.10. Process
Typically start with set of f.d., F
 • determined from semantics of attributes
Then use IR1,2,3 to infer additional f.d.s
Determine left hand sides (Xs)
 • Then determine all attributes dependent on X
For each set of attributes X,
 • determine $X^+:$ the set of attributes f.d'ed by X on F

3.1.11. Algorithm

• Compute the closure of X under F: X^+
 • $x_{plus} = x$;
 • do
 • oldxplus = x_{plus};
 • for (each f.d. $Y \rightarrow Z$ in F)
 • if (x_{plus} implies Y) then
 • $x_{plus} = x_{plus}$ union Z;
 • while ($x_{plus} \neq$ oldxplus);

3.1.12. Function dependency

• Consider a relation schema $R(A,B,C,D)$ and a set F of functional dependencies
 • Aim to find all keys (minimal superkeys),
 • by determining closures of all possible X subsets of R’s attributes, e.g.
 • A^+, B^+, C^+, D^+,
 • AB^+, AC^+, AD^+, BC^+, BD^+, CD^+
 • ABC^+, ABD^+, BCD^+
 • $ABCD^+$

3.1.13. Worked example

• Let R be a relational schema $R(A, B, C, D)$
• Simple set of f.d.s
• $AB \rightarrow C$, $C \rightarrow D$, $D \rightarrow A$
• Calculate singletons
 • A^+, B^+, C^+, D^+,
• Pairs
 • AB^+, AC^+,…
• Triples
 • and so on

3.1.14. Worked example

• Compute sets of closures
3.1. Functional Dependency

- AB -> C, C -> D, D -> A

1. Singletons
 - A+ -> A
 - B+ -> B
 - C+ -> CDA
 - D+ -> AD

- Question: are any singletons superkeys?

3.1.15. F.d. closure example

2. Pairs (note commutative)
 - AB+ -> ABCD
 - AC+ -> ACD
 - AD+ -> AD
 - BC+ -> ABCD
 - BD+ -> ABCD
 - CD+ -> ACD

- Superkeys?

3.1.16. F.d. closure example

3. Triples
 - ABC+ -> ABCD
 - ABD+ -> ABCD
 - BCD+ -> ABCD

- Superkeys? Minimal superkeys (keys)?

4. Quadruples
 - ABCD+ -> ABCD

3.1.17. F.d. closure summary

- Superkeys:
 - AB, BC, BD, ABC, ABD, BCD, ABCD
- Minimal superkeys (keys)
 - AB, BC, BD