
1.3. Joins http://www.lightenna.com/book/export/s5/110/theme_cs

1 of 6 22/01/2007 11:05

1.3. Joins
In this lecture we look at...

1.3.01. Introduction
Recap: pulling data out of individual relations

By row, by column
Select and project

Access across multiple relations
Miniworld approximation

Fragmenting entities by cardinality
Tuples as entity fragments
Relationships within relations

Joins
Join types (condition and unmatched)

1.3.02. Access across relations
Relational model allows multiple relations to exist within one database schema
Relations can be accessed individually or together (joins).
Referential integrity

Relations relating
Pulling data out of single relations

Select and project
Pulling related data out of

Multiple relations using Join

1.3.03. Miniworld approximation
Universe of Discourse, or Miniworld
Miniworld is an incomplete model of the real world
The relational data model as a model for the miniworld
Approximation

Separate and distinct entities
Single complex entities
Separate related entities
Cardinality of relationships

Each relation made up of attributes
Values can be used as references

1.3.04. Pointing mechanism

1.3. Joins http://www.lightenna.com/book/export/s5/110/theme_cs

2 of 6 22/01/2007 11:05

Relation has a Primary key
Tuple contains Primary key value
Foreign keys

Tuples can contain a reference to another relation's Primary key
Just numbers

One number identifies a single tuple in one relation (local), one number identifies a single tuple in another
relation (foreign).

1.3.04b. Pointing mechanism example in C
C programming language
Memory addresses, or pointers

int a=0;
int b=0;
a = &b;

a points to b

In databases, typically done with unique identifiers (IDs) rather than memory addresses.

1.3.04c. Pointing mechanism with structures
Foreign key importing

typedef struct car
{
 int ID;
 char[] make;
 char[] model;
 char[] derivative;

1.3. Joins http://www.lightenna.com/book/export/s5/110/theme_cs

3 of 6 22/01/2007 11:05

 int optionID;
} car;

typedef struct option
{
 int ID;
 char[] name;
 int price;
} option;

car c;
option o;
//...data structure populating
c.optionID = o.ID;

1.3.05. Relational cardinality
1:0 relationships

Single entity
Uniquely indentifiable
Candidate keys
Primary Key

1:1 relationships
Two entities, A and B
1 A relates to 1 B and vice versa

1:N relationships
M:N relationships

1.3.06. Relationships in the relational model
Two relations, A and B
A side, B side, 1 side, N side
1:1 relationships

Key can go on either side

1:N relationships

1.3. Joins http://www.lightenna.com/book/export/s5/110/theme_cs

4 of 6 22/01/2007 11:05

Key cannot go on 1 side
Has to go on N side

M:N relationships
Nowhere obvious for the key to go
Create new pairing relation

1.3.07. Joins
Phase change, different point in lifecycle
Join operation

Combines related tuples, conditionally
From two relations
Into single tuples

Allows processing of relationships
Among multiple relations

1.3.08. Joins, canonical algebraic form
Conditional (on join condition)

Only combines tuples where true
Cartesian product (conditionless)

example of conditionless join
all tuples combined
R �true S

�, Binary operator
e.g. R �<join_condition> S

1.3.09. Join equivalence
Equivalent to sequence

Cartesian product (X)
followed by Selection (s)

ACTUAL_DEPENDENTS =
sSSN=ESSN(EMPNAMES X DEPENDENT)
or
ACTUAL_DEPENDENTS =

1.3. Joins http://www.lightenna.com/book/export/s5/110/theme_cs

5 of 6 22/01/2007 11:05

EMPNAMES � SSN=ESSN(DEPENDENT)

1.3.10. Join types (condition)
Theta: Ai q Bj
(A from R, B from S)

q is comparison operator
=,<,>,!=,>=
Ai and Bj share the same domain

Equi: Ai = Bj
Theta join where q is =

Natural: Ai and Bj are the same attribute
in two separate relations (name and domain)
* denotes natural join
e.g. EMPNAMES * DEPENDENTS

1.3.11. Join types (inner and outer)
Inner joins

not the only joins
eliminate tuples without a matching counterpart
i.e. tuples with a null value for the join attribute are discarded

1.3. Joins http://www.lightenna.com/book/export/s5/110/theme_cs

6 of 6 22/01/2007 11:05

1.3.12. Outer joins
Outer joins control what's discarded

Keep unmatched tuples in either
Left, right, or both relations
Left, right of full outer join correspondingly

