1.3. Joins

In this lecture we look at...

1.3.01. Introduction

- Recap: pulling data out of individual relations
 - By row, by column
 - Select and project
- Access across multiple relations
- Miniworld approximation
 - Fragmenting entities by cardinality
 - o Tuples as entity fragments
 - Relationships within relations
- Joins
- Join types (condition and unmatched)

1.3.02. Access across relations

- Relational model allows multiple relations to exist within one database schema
- Relations can be accessed individually or together (joins).
- Referential integrity
 - Relations relating
- Pulling data out of single relations
 - Select and project
- Pulling related data out of
 - Multiple relations using Join

1.3.03. Miniworld approximation

- Universe of Discourse, or Miniworld
- Miniworld is an incomplete model of the real world
- The relational data model as a model for the miniworld
- Approximation
 - Separate and distinct entities
 - Single complex entities
 - Separate related entities
 - Cardinality of relationships
- Each relation made up of attributes
- Values can be used as references

1.3.04. Pointing mechanism

- Relation has a Primary key
- Tuple contains Primary key value
- Foreign keys
 - o Tuples can contain a reference to another relation's Primary key
- Just numbers

Cars	<u>ID</u>	Make	Model	Derivative	OptionID
	1	BMW	3 Series	320d	4
	2	BMW	3 Series	318i	NULL
	3	BMW	3 Series	325i	6
Options	ID	Name		Price	
.55	3	16" Radi	al alloy	800)
	4	17" Star	alloy	880)
	- 5	17" Web	alloy	1029	5
	6	Metallic	paint	325	5

One number identifies a single tuple in one relation (local), one number identifies a single tuple in another relation (foreign).

1.3.04b. Pointing mechanism example in C

- C programming language
- Memory addresses, or pointers

```
int a=0;
int b=0;
a = \&b;
```

• a points to b

	int A		int A
0xFF138	0	a = &b	0xFF134
	int B		int B
0xFF134	0		0

In databases, typically done with unique identifiers (IDs) rather than memory addresses.

1.3.04c. Pointing mechanism with structures

• Foreign key importing

```
typedef struct car
{
  int ID;
  char[] make;
  char[] model;
  char[] derivative;
```

```
int optionID;
} car;

typedef struct option
{
  int ID;
  char[] name;
  int price;
} option;

car c;
option o;
//...data structure populating
c.optionID = o.ID;
```

Car	<u>ID</u>	Make	Model	Derivative	OptionID
	1	BMW	3 Series	320d	4
Option	ID	Name		Price	
	4	17" Star :	alloy	880	

1.3.05. Relational cardinality

- 1:0 relationships
 - o Single entity
 - Uniquely indentifiable
 - Candidate keys
 - Primary Key
- 1:1 relationships
 - Two entities, A and B
 - o 1 A relates to 1 B and vice versa
- 1:N relationships
- M:N relationships

1.3.06. Relationships in the relational model

- Two relations, A and B
- A side, B side, 1 side, N side
- 1:1 relationships
 - Key can go on either side

Car	ID	Make	Model	Derivative		
	1	BMW	3 Series	320d		
Option	ID	Name		Price	CarlD	
- 12	4 17" Star alloy		88	30		

• 1:N relationships

- Key cannot go on 1 side
- Has to go on N side

Car	<u>ID</u>	Make	Model	Derivative	(2)	
	1	BMW	3 Series	320d		
Door	<u>ID</u>	Name		Size/mm3	CarlD	
	3	Front left		1210		1
	4	Back right		1290		2
	5	Sunroof		340		1
	6	Hatchback	(325	NULL	

- M:N relationships
 - o Nowhere obvious for the key to go
 - Create new pairing relation

1.3.07. Joins

- Phase change, different point in lifecycle
- Join operation
 - o Combines related tuples, conditionally
 - From two relations
 - o Into single tuples
- Allows processing of relationships
- Among multiple relations

1.3.08. Joins, canonical algebraic form

- Conditional (on join condition)
 - Only combines tuples where true
- Cartesian product (conditionless)
 - example of conditionless join
 - o all tuples combined
 - \circ R \bowtie_{true} S
- ▶, Binary operator
 - e.g. $R \bowtie < join_condition > S$

1.3.09. Join equivalence

- Equivalent to sequence
 - Cartesian product (X)
 - o followed by Selection (s)
- ACTUAL_DEPENDENTS = sSSN=ESSN(EMPNAMES X DEPENDENT)
- or
- ACTUAL_DEPENDENTS =

1.3.10. Join types (condition)

- Theta: A_i q B_j (A from R, B from S)
 - o q is comparison operator
 - =,<,>,!=,>=
 - o Ai and Bj share the same domain
- Equi: $A_i = B_j$
 - Theta join where q is =
- Natural: A_i and B_j are the same attribute
 - o in two separate relations (name and domain)
 - * denotes natural join
 - e.g. EMPNAMES * DEPENDENTS

Cars	ID	Make	Model	Derivative	OptionID		
	1	BMW	3 Series	320d	4		
	2	BMW	3 Series	318i	4		
	3	BMW	3 Series	325i	6		
Options	ID	Name		Price			
	3	16" Radi	al alloy	800			
	4	17" Star alloy		880			
	17" Web alloy		1025				
	6	Metallic	paint	325			
JoinRel is	equ	ijoin equi	valent to s(C	ars.OptionID =	Options.ID)(Cars x Options)	
JoinRel	ID	Make	Model	Derivative	OptionID	Name	Price
	1	BMW	3 Series	320d	4	17" Star alloy	880
	2	BMW	3 Series	318i	4	17" Star alloy	880
	3	BMW	3 Series	325i	6	Metallic paint	325

1.3.11. Join types (inner and outer)

- Inner joins
 - o not the only joins
 - o eliminate tuples without a matching counterpart
 - o i.e. tuples with a null value for the join attribute are discarded

Cars ID Make Model Derivative OptionID 1 BMW 3 Series 320d 2 BMW 3 Series 318i NULL 3 BMW 3 Series Options ID Name 3 16" Radial alloy 4 17" Star alloy 880 5 17" Web alloy 1025 6 Metallic paint ID Make Model Derivative OptionID Name Inner 4 17" Star alloy 880 1 BMW 3 Series 320d 3 BMW 6 Metallic paint 3 Series

1.3.12. Outer joins

- Outer joins control what's discarded
 - o Keep unmatched tuples in either
 - Left, right, or both relations
 - Left, right of full outer join correspondingly

LeftOuter	ID	Make	Model	Derivative	OptionID	Name	Price	
	1	BMW	3 Series	320d	4	17" Star alloy	10000	880
	2	BMW	3 Series	318i	NULL	NULL	NULL	
	3	BMW	3 Series	325i	6	Metallic paint		325
RightOuter	ID	Make	Model	Derivative	OptionID	Name	Price	
No.	N	NULL	NULL	NULL	3	16" Radial alloy		800
	1	BMW	3 Series	320d	4	17" Star alloy		880
	N	NULL	NULL	NULL	5	17" Web alloy		1025
	3	BMW	3 Series	325i	6	Metallic paint		325
FullOuter	ID	Make	Model	Derivative	OptionID	Name	Price	
	N	NULL	NULL	NULL	3	16" Radial alloy		800
	1	BMW	3 Series	320d	4	17" Star alloy		880
	N	NULL	NULL	NULL	5	17" Web alloy		1025
	2	BMW	3 Series	318i	NULL	NULL	NULL	
	3	BMW	3 Series	325i	6	Metallic paint		325