
1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

1 of 28 22/01/2007 11:10

1. Data models
This is the Data models course theme. In this section we introduce concepts for modelling data and language
for communicating those models.

1.1. Introduction
Databases are pervasive in modern society. So many of our actions and attributes are logged and stored in
organised information repositories, or Databases.

1.1.01. Databases
Where do we come into contact with databases?
Supermarket inventories/EPOS

Supplies, shopping habits, store locations, accounts
Films (iMDB)

Cast lists, shooting schedules, histories, budgets
Department

Students, courses, staff, payroll

These are all examples of relatively simple databases. All of the information is textual or referential.

1.1.02. New technologies
Not just traditional, numeric/textual
Research 70s biased
Digital media

Video servers (atom/bbc/youtube)
Multimedia databases

Web site, collection of diverse data types
Google, AltaVista

Stock Exchange
Futures, Currency markets, trends
Databases comprising not only data, but modelling algortihms

Microsoft's WinFS

Databases don't have to store just text. Increasingly Database servers are storing, indexing and delivering
rich-media content, explicitly images, audio and video.

Microsoft's next generation File storage system (WinFS) is a relational database. From a user perspective,
searching (the process of indexing content by keyword) is already mainstream. Users are moving away from
rigid directory structures (files and folders) and towards keyword-tagged content.

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

2 of 28 22/01/2007 11:10

1.1.03. Variations
Not only in role
Size

Video server example
Complexity

Ford Puma™ example
Ford staff organised by production line and car
e.g. Each staff member answers to a 'part' manager (engines, bodyshell, chassis) and a 'car'
manager (Puma, Mondeo, Ka)

Expense
User profiles and demands

We've seen that databases are used in a variety of contexts. Those roles imply properties of each of the
systems. An interlinked text-only database (such as Unix/Linux's MAN pages) will require much less storage
than a video archive.

Some databases are perceptually more complex. Ford's staff management model would be represented as a
matrix (in this case 2 dimensional). Computers are very good at organising multi-dimensional space.

1.1.04. Definition
Embrace diversity
Data and semantic
Database: related data, implicit meaning
Sample/subset of real world

real world with bounds
Miniworld/Universe of Discourse

A single definition of a database is hard to come by. Dictionary.com defines a database as: a comprehensive
collection of related data organized for convenient access, generally in a computer. The Wikipedia definition
runs for several pages.

1.1.05. Abstraction
Previous lab exercises

Problem: reading data from a file
Abstraction theme
Basis of good OOP and further good P

from encapsulation to software component analysis
Layering, splitting data from design

Solution: grammar (language guide) and data

In some of your previous lab assignments, or practical experience, you may have been faced with the problem
of caching information persistently in a file, later to be reloaded.

When writing the data into the file, we are storing more than just that information. We are storing implicitly a

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

3 of 28 22/01/2007 11:10

design/grammar for that data. That implicit design is evident when accessing the file with a naive interface. If
you try to read the data out in a different order, it fails.

A better solution is to split the way the information is stored from the actually information stored.

1.1.06. Data-design divide
Left-hand/right-hand divide
LHS: Catalog

or Meta-data
or Intension
or Schema
i.e. the Design of database
Types of data, organisation, constraints

RHS: Extension
or Snapshot
The data itself
Information stored in the database
Tuples

1.1.07. DBMS
DataBase
Management
System
Collection of programs that enable users to:

Define - patterns, boundaries, design
Construct - populate to go live
Manipulate - runtime changes

data in a structured, organised store.

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

4 of 28 22/01/2007 11:10

1.1.08. Database Management Systems
Properties
Data models and independence

Requirements
Categorisation of Database users

DBMS components
Architecture

When considering the database systems as a whole, we need to look at all the components, including elements
that interact with the DBMS (users, whom we categorise for simplicity).

This course will contain a discussion of the components that make up the system and the way they interact
(system architecture).

1.1.09. Models
Data models
Relational data model (Oracle)
Object data model (ObjectStore)
Legacy systems

Hierarchical data model
Network data model

A data model is an invention. It is a construct that allows us to share an understanding of how the system
works. As with all good constructs, it's an abstraction; a simplification; a story.

In this course we're going to look at the Relational model, where the database is organised into tables
(relationals) and each row (tuple) within that relation is coded (keyed) to allow referencing between the
relationals.

The Relational model, inspite of being innovated in the 1970s is still the most popular, underpining
mainstream modern databases such as Oracle 10i and MySQL 5.0

As programming languages are becoming increasingly Object orientated, programmers require a means of
persistently storing their Objects. Object Orientated Databases (OODBs) exist to fulfil this purpose. OODBs
may ultimately replace relational databases, but it's not clear at this stage when.

1.1.10. Other properties
Beside Data model
Number of users
Number of sites
Cost
Types of access paths
Generality, or inversely specificity

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

5 of 28 22/01/2007 11:10

MySQL is a highly general database system, in that it supports many different designs. My mobile phone
address book is a highly specific database system and as such is not easily extensible.

1.1.11. Independence
Based on File processing
Data definition implicit in

Data
Application program

Example of one specific database
Structure embedded into access program

Coursework code re-use example

Earlier I made mention of this problem. Databases tie into the wider Software Engineering field. Within
Software Engineering, post-development issues of code re-use, maintenance, future evolution etc. necessitate
a logical flexible approach to program design. Databases are such an approach. In order to store information
in a database you invest a small amount of time in explicitly structuring it, however you then get things like
flexibility (data independence etc.) for free.

1.1.12. Program-data independence
General databases

Separate Data definition and data
Catalog/meta-data & tuples

Data format/structure stored separately
Program-data independence (e.g. Y2K)

Changes in data format
Alter data (tuples)
Alter grammar (catalog/meta-data)

We actually split program-data independence into:
Logical
Physical

...more in a second

1.1.13. Program-operation independence
In object-orientated databases

Objects consist of attributes and operations
Operation defined by

Header/Interface/Prototype or Signature
Implementation

Program-operation independence
Implementation change hidden from user

Collectively data abstraction

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

6 of 28 22/01/2007 11:10

1.1.14. Logical and physical program-data
independence

Three tier data-model diagram
Mappings, Data independence

Logical
between conceptual and external
changes to conceptual without changing

external schemas or application programs
Physical

between internal and conceptual
changes to internal without changing

conceptual or external schemas

1.1.15. DBMS Requirements
DataBase Management System

Abstraction (i.e. program-data independence)
Conceptual representation (data models)
Multiple views and User Interfaces
Data sharing and transaction processing
Access restriction
Redundancy removal/optimisation
Persistent storage (Program objects) & Integrity
Relationship management & Inference
Backup and recovery

Here's a summary of what we need from a DBMS

1.1.16. Database Users
Database as 1y resource, DBMS as 2y
Database administrators (DBA)
Database designers
End users

Naïve - canned transactions e.g. bank/airline
Sophisticated - engineers, scientists, query editors
Stand-alone (personal databases/MS Access)

1.1.17. Results of use
Knock-on effects of database approach
Enforcing standards
Reduced Development time

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

7 of 28 22/01/2007 11:10

Adaptive to change (design changes)
Up-to-date information (live database)
Economies of scale

centralising commonly required resources

...and this is what you get for free. These are the consequences, largely positive, of adopting a database
approach to an information storage problem.

1.1.18. Design side
Meta-data

Database schema, intension
Data Model
Left hand side of database divide

Schema diagram
Entity-relationship (ER diagrams)
UML diagrams

1.1.19. Data side
Data, under the column heading
Less easy to look at (volume issue)
Fundamentally less interesting (more specific)
Variety of tools for looking at it:

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

8 of 28 22/01/2007 11:10

HeidiSQL, PhpMyAdmin, Sword
Here's what a snapshot looks like:

1.1.20. Data model
Data model

Structure of the database
Collection of basic operations
Collection of behaviours/user defined operations

Dependent on level of abstraction
Tier diagram

External (user views)
Conceptual*
Internal

1.1.20. General data model terms
Entity
Relationship
Attributes
Keys

What follows here is an introduction to the terms which make up the language that we use to describe data
models.

1.1.21. Entity
Selected from real world
Populate Miniworld/UoD
Entity is an approximation
Two elements: Entity types and sets
Collection of attributes

Object similarity, classes as entity types

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

9 of 28 22/01/2007 11:10

Entities inter-relate

1.1.22. Attributes
Data type, domain
Simple or composite
Single or multivalued
Stored or derived
Null

1.1.23. Keys
Mechanism for unique identification
Uniqueness constraint
Strong and weak entities
Key attribute
Composite keys
Multiple keys

1.1.27. Relationships
Types and Sets
Participation by Entities
Degree - e.g. binary
Cardinality ratios - e.g. 1:1, 1:M

Determine occurrence
Tuples example

Foreign keys

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

10 of 28 22/01/2007 11:10

1.1.28. Database architecture
Client-Server
Distributed databases

Fragmentation by attribute/tuple/relation
Language and description

Storage Definition Language (SDL) DESIGN
Data Definition Language (DDL) DESIGN
View Definition Language (VDL) DESIGN
Data Manipulation Language (DML) DATA

High level, can be embedded but precompiled
Procedural, record-at-a-time, requires high level support

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

11 of 28 22/01/2007 11:10

1.1.29. Structured Query
Structured Query Language (SQL or SEQUEL)
Success of relational databases

Developed for SystemR at IBM
ANSI standardised

SQL1 or SQL-86, ongoing extension
SQL2 or SQL-92, current version
SQL3 (1999), SQL2003
DDL, DML(low-level) and VDL

1.2. Data models
A data model is a model that describes in an abstract way how data are represented in a business organization,
an information system or a database management system - Wikipedia.

1.2.01. Introduction
Relational model
Abstract operations on relations

Set theoretic operations
Relational-specific operations

Basic algebra operations
Union, Intersection, Difference
Cross product

1.2.02. Relational model
Table as relation
Row as tuple

real world entity or relationship
fact

Column as attribute
Domain

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

12 of 28 22/01/2007 11:10

The concept of a relation is abstract, therefore we have a number of different ways of visualising it.

1.2.03. Relation
Relation schema R(A1, A2, A3.. An)

Design side
Assertion/declaration

Relation state
Data side
set of n-tuples

each one an ordered list of values
1NF: each value is atomic, no composite/multivalue

1.2.04. Abstract operations
Database lifecycle

design, populate, evolve

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

13 of 28 22/01/2007 11:10

Insert
tuple (a1,a2,a3…an)

Delete
tuple (a1,a2,a3…an)

Update (or modify)
tuple (a1,a2,a3…an)
attribute to change, new value

All the operations described in the next few sections are abstract. We're going to see how valuable they can be
in processing real world data later.

1.2.05. Basic algebra
Two categories

Set theoretic operations
Union, Intersection etc.

Relational specific
Select, project and join

At this stage we're talking about set theoretical operators on the Relational model, not SQL instructions
which confusingly have identical names and only similar behaviour.

1.2.06. Select operation
SELECT a subset of tuples from a relation

Uses selection condition
Evaluate each tuple to true of false

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

14 of 28 22/01/2007 11:10

False tuples discarded
Sigma (s)
output = s(cond)(input_relation)
Relation schema: R(output) = R(input_relation)
Commutative

1.2.07. Project operation
PROJECT a subset of attributes for all tuples from a relation

Pi (p)
p<attribute list>(R)

If sublist is only non-key attributes
might get duplicates

Removes duplicates
Attribute list:sublist example

The result set of the operation is itself a relational. That output relation will contain the same number of rows
as the input, however it may contain a different number of columns; fewer if a subset of attributes is
projected; more if derived or aggregated attributes are included.

1.2.07. Sequences of operations
Select followed by projection
Area clipping: rows then columns
p<attr list>
(s(select_cond)(R))
Rename operation (r)

Renames attributes list2 from list1
r(new_attr_names)(R)

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

15 of 28 22/01/2007 11:10

1.2.08. Rename operation
Attribute renaming only

Cannot alter domain, or add/remove attr
Rename operation (r)

Renames attributes list2 from list1
r(new_attr_names)(R)

Implicit renaming
Order dictated by relational schema

1.2.08. Set Theoretic
Binary operation: two relations

Sets of tuples
Union compatibility (same attributes)

Union (R u S)
Intersection (R n S)

Commutative (R u (S u T) = (R u S) u T)
Set difference

Non-commutative (R-S != S-R)

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

16 of 28 22/01/2007 11:10

1.2.09. Cross product
Cartesian product of two relations
R x S
Also known as

Cross product
Cross join

Cross product diagram
Introduction to complexity

Computationally explosive

1.2.10. Relational algebra/model notation
Relational schema R(A1, A2,…,An)
Relation state r or r(R)

Set of unordered tuples
r = {t1, t2,…,tn}

Each n-tuple is an ordered list of values

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

17 of 28 22/01/2007 11:10

t = <v1, v2,…,vn>

ith value in t = vi called t[Ai]
r(R) subset of (dom(A1) x dom(A2)... x dom(An))

1.2.11. Constraints
Domain constraint

For all v in t of r(R)
vi is an element of dom(Ai)

Entity constraint
K = SKmin
t[K] != null

Key constraint
Superkey SK as identifying subset of attributes
t1[SK] != t2[SK]

1.2.12. Referential integrity
Given two relations R1 and R2

R1 contains a foreign key (FK) that references
A primary key (PK) in R2

R1 referencing relation, R2 referenced relation
Shared domains: dom(FK) = dom(PK)
Foreign exists: t1 in r(R1), t2 in r(R2)

t1[FK] = t2[PK] || NULL

1.3. Joins
In this lecture we look at...

1.3.01. Introduction
Recap: pulling data out of individual relations

By row, by column
Select and project

Access across multiple relations
Miniworld approximation

Fragmenting entities by cardinality
Tuples as entity fragments
Relationships within relations

Joins
Join types (condition and unmatched)

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

18 of 28 22/01/2007 11:10

1.3.02. Access across relations
Relational model allows multiple relations to exist within one database schema
Relations can be accessed individually or together (joins).
Referential integrity

Relations relating
Pulling data out of single relations

Select and project
Pulling related data out of

Multiple relations using Join

1.3.03. Miniworld approximation
Universe of Discourse, or Miniworld
Miniworld is an incomplete model of the real world
The relational data model as a model for the miniworld
Approximation

Separate and distinct entities
Single complex entities
Separate related entities
Cardinality of relationships

Each relation made up of attributes
Values can be used as references

1.3.04. Pointing mechanism
Relation has a Primary key
Tuple contains Primary key value
Foreign keys

Tuples can contain a reference to another relation's Primary key
Just numbers

One number identifies a single tuple in one relation (local), one number identifies a single tuple in another
relation (foreign).

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

19 of 28 22/01/2007 11:10

1.3.04b. Pointing mechanism example in C
C programming language
Memory addresses, or pointers

int a=0;
int b=0;
a = &b;

a points to b

In databases, typically done with unique identifiers (IDs) rather than memory addresses.

1.3.04c. Pointing mechanism with structures
Foreign key importing

typedef struct car
{
 int ID;
 char[] make;
 char[] model;
 char[] derivative;
 int optionID;
} car;

typedef struct option
{
 int ID;
 char[] name;
 int price;
} option;

car c;
option o;
//...data structure populating
c.optionID = o.ID;

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

20 of 28 22/01/2007 11:10

1.3.05. Relational cardinality
1:0 relationships

Single entity
Uniquely indentifiable
Candidate keys
Primary Key

1:1 relationships
Two entities, A and B
1 A relates to 1 B and vice versa

1:N relationships
M:N relationships

1.3.06. Relationships in the relational model
Two relations, A and B
A side, B side, 1 side, N side
1:1 relationships

Key can go on either side

1:N relationships
Key cannot go on 1 side
Has to go on N side

M:N relationships
Nowhere obvious for the key to go
Create new pairing relation

1.3.07. Joins
Phase change, different point in lifecycle
Join operation

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

21 of 28 22/01/2007 11:10

Combines related tuples, conditionally
From two relations
Into single tuples

Allows processing of relationships
Among multiple relations

1.3.08. Joins, canonical algebraic form
Conditional (on join condition)

Only combines tuples where true
Cartesian product (conditionless)

example of conditionless join
all tuples combined
R �true S

�, Binary operator
e.g. R �<join_condition> S

1.3.09. Join equivalence
Equivalent to sequence

Cartesian product (X)
followed by Selection (s)

ACTUAL_DEPENDENTS =
sSSN=ESSN(EMPNAMES X DEPENDENT)
or
ACTUAL_DEPENDENTS =
EMPNAMES � SSN=ESSN(DEPENDENT)

1.3.10. Join types (condition)
Theta: Ai q Bj
(A from R, B from S)

q is comparison operator
=,<,>,!=,>=
Ai and Bj share the same domain

Equi: Ai = Bj
Theta join where q is =

Natural: Ai and Bj are the same attribute
in two separate relations (name and domain)
* denotes natural join
e.g. EMPNAMES * DEPENDENTS

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

22 of 28 22/01/2007 11:10

1.3.11. Join types (inner and outer)
Inner joins

not the only joins
eliminate tuples without a matching counterpart
i.e. tuples with a null value for the join attribute are discarded

1.3.12. Outer joins
Outer joins control what's discarded

Keep unmatched tuples in either
Left, right, or both relations
Left, right of full outer join correspondingly

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

23 of 28 22/01/2007 11:10

1.4. ER diagrams
In this lecture we look at...

1.4.01. ER Diagrams and Relational mapping
Design communication techniques

ER diagrams
ER to relational mapping

Entities to Objects
Type Inheritance

EER diagrams
UML

Web DB Integration

1.4.03. Design in the modern context
Team based development
Documentation

Value of design over description
DB sketching (left hand side)

Concept more important than perfection
Design iteration

Mini-world as approximation
Categorisation to create entities
Verb’ing to create actions/relationships

1.4.04. Database Left:right divide
Design

Catalog, Meta-data, Intension, or Database schema
Entity type
Relationship type

State
Set of occurences/instances, Extension, snapshot
Entity set
Relationship set

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

24 of 28 22/01/2007 11:10

1.4.05. Basic ER diagram
Typically part of a system
(Strong) Entities

Product
Customer
Payment

Relationships
Sale

1.4.06. Mapping ER to Relation DB tables
Intuitive mapping

Entities as tables

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

25 of 28 22/01/2007 11:10

Attributes as columns
Relationships are more difficult
Key sharing mechanism

Foreign key references primary key
Where to put the foreign key forms the intuitive guide to the rest of
the mapping

1.4.07. ER to Relational mapping
Step-by-step approach

Strong entities1.
Create relation including (simplified) attributes

Weak entities2.
Create relation inc. attr, foreign/pri key of owner

Binary relationship S:T, 1:13.
Choose relation, say S (with total participation) and inc. foreign/pri
key of T
inc. relationship attributes

1.4.08. Cardinality
Specifies number of relationship instances a single entity can participate in
S:T (1:1)
An entity from table S can is related to one, and only one entity from table T
1:1, 1:N, N:M

DEPARTMENT : EMPLOYEE
EMPLOYEE : EMPLOYEE
PROJECT : EMPLOYEE

1.4.09. ER to Relational mapping
Binary relationship 1:N5.

Choose relation T (N-side) inc. foreign/pri key of S
Binary relationship M:N6.

Create relation, inc. foreign/pri keys of S&T
Multivalued7.

For each mv_attr, create new relation, inc. foreign/pri key of parent
n-ary relationship8.

Create new relation, inc. all foreign/pri keys of participating
entities

1.4.10. Participation
Participation constraints

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

26 of 28 22/01/2007 11:10

Existence of an entity dependant upon
being related to another entity
via relationship type (left hand/design)

Total (")/Existence
dependency (double line)

Every student must be in a faculty
For every entity in the total set of students

Partial ($) (single line)
Some students are student_representatives
There exists some entity(s) within the set of all…

1.5. UML
In this lecture we look at...

1.5.01. UML diagrams
Not just one type of diagram
ER Entities -> UML objects
Adds scope to include methods

1.5.03. Simple UML relationship diagram
Classes

Attributes
Methods

Relationships
Participation
Cardinality
Roles

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

27 of 28 22/01/2007 11:10

1.5.04. UML inheritance
Notion of inheritance

Java parallel
'is a' relationships
Database Student

is a Computer Science Student
is an Engineering Faculty Student

is a Student
is a Person

Inheritance hierarchies
UML diagrams can be used to show inheritance

1.5.05. UML diagram
Classes

1. Data models http://www.lightenna.com/book/export/s5/67/theme_cs

28 of 28 22/01/2007 11:10

Relationships
Inheritance

