
2.1. Queries http://www.lightenna.com/book/export/s5/153

1 of 11 16/02/2007 08:41

2.1. Queries
In this lecture we look at...

2.1.01 Introduction
Methods of getting data out
The need for queries
QBE
SQL (design side)

History
Schemas and relations (CREATE)
Data types and domains
DROP and ALTER

2.1.02. Querying interfaces
High (view) level
Query-By-Example (QBE)

Alternative to SQL
Table driven (visually similar to relations)
Rather than script driven, hence intuitive over learned
Visual or text based

User fills in templates
Microsoft Access approach

2.1.02b. QBE visual example
Record advancing
Query designing

Finite domain attributes
Web search parallel

2.1. Queries http://www.lightenna.com/book/export/s5/153

2 of 11 16/02/2007 08:41

2.1.03. QBE text-format example
P. print, I. insert, D. delete, U. update
_VARNAME, copy field value into variable

2.1.05. SQL
Structured Query Language

(SQL or SEQUEL)
Wikipedia reference

Success of relational databases
Developed for SystemR at IBM
ANSI standardised
SQL-1986 (SQL1), ongoing extension
SQL-1992 (SQL2), current version (Oracle 9i)
SQL-1999 (SQL3), regular expression matching, recursive queries
SQL-2003, XML features, auto-generated columns

2.1.05b. SQL command syntax
Where follows here is a brief summary

Oracle syntax
Similar but not identical to MySQL/MSSQL

General familiarity
Query writing best learnt by doing it
Lecture live-example
Coursework 1 will be SQL
Oracle (9i) SQL reference
MySQL (5.0) SQL reference

2.1. Queries http://www.lightenna.com/book/export/s5/153

3 of 11 16/02/2007 08:41

2.1.05c. SQL in application
Keyword oriented language
Keywords not congruous with Relational model
Lots of different ways to write SQL

Analogous to C/Java formatting
if (b==2) { a=1; } else { a=0; }

Recommend using case to differentiate attributes and keywords
SELECT colour, size, shape FROM fruit WHERE weight>22;

Oracle user accounts on Teaching database
Namespace references, e.g. shared.cars

2.1.06. SQL Create schema
Data definition commands
CREATE

SCHEMA <schema_name> AUTHORIZATION <a>
or workspace

Beware of names
Name collisions produce odd behaviours

SQL Schema embraces Tables (relations), constraints, views, domains, authorizations

2.1.07. SQL Create table
CREATE TABLE

<schema_name>.<relation_name>
(

<attribute_definitions>
<key>
<constraints>

)
CREATE TABLE example (Oracle)
Tables can (and should) be indexed by user
e.g. <username>.<tablename>
Normal login implies username
Non-local table access

2.1.08. Data types and domains (Oracle)
Numeric

ENUM
NUMBER, NUMBER(i), NUMBER(i,j)

Formatted numbers, i precision, j scale
(number of digits total, after decimal point)

Character-string

2.1. Queries http://www.lightenna.com/book/export/s5/153

4 of 11 16/02/2007 08:41

CHAR(n) - n is length
VARCHAR2(n) - n is max

DESCRIBE output example
Multi-database comparison of Datatypes
Database legacy: limited storage necessitated efficient storage
Does it need to be efficient anymore?

You might consider all SQL types as being conceptually similar to attribute types in the relational
model, although in reality the implementation of these types in a DBMS only approximates the
mathematical purity of unordered domain sets etc.

2.1.08b. Data types and domains (MySQL)
Numeric

TINYINT, INT, INT UNSIGNED
FLOAT, DOUBLE, DECIMAL
ENUM
Character-string

CHAR(n) - n is length
VARCHAR(n) - n is max
TINYTEXT, TEXT
Beware different default/maximum lengths to Oracle

BLOB
Multi-database comparison of Datatypes

2.1.09. Time-based data types
Date and Time

DATE
Ten positions, components YYYY-MM-DD

TIME
Eight positions, components HH:MM:SS

TIME(i)
Time fractional seconds precision
Adds i+1 positions

TIMESTAMP
optionally WITH TIME ZONE

Very sensitive to syntactical ambiguities
day/month/year/hour/minute separators

2.1.10. DROPing
DROP <object> <obj_name> <flags>
DROP SCHEMA <schema_name> CASCADE

drops all workspace tables, domains
DROP TABLE <relation_name> RESTRICT

2.1. Queries http://www.lightenna.com/book/export/s5/153

5 of 11 16/02/2007 08:41

only drops table if
not referenced in any constraints/views

Notion of cascading
Table links

2.1.11. ALTERing
Schema evolution
Design side
ALTER TABLE <schema_name>.<relation_name> ADD
<var_name> <var_type>;
Example

ALTER TABLE uni.student ADD hall VARCHAR(32);
Upper and lower case syntax
Naming conventions

2.1.12. Queries
Helper interfaces

HeidiSQL/phpMyAdmin/Sword/SQLplus
Design/perform a lot of routine queries for you
Important to learn SQL, reinforcement
Designing select queries is more difficult
Visual interfaces still lacking in this area

Select queries in SQL
Basic singlets
Renaming
Queries with Joins
Nested queries

2.1.13. SQL Queries
SELECT statement
Similar to relational data model SELECT then PROJECT

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

2.1. Queries http://www.lightenna.com/book/export/s5/153

6 of 11 16/02/2007 08:41

2.1.14. SQL Queries
SELECT <attr_list>

FROM R,S,T
WHERE DNO = 10

equivalent to
p<attr_list>(sDNO=10 (R X S X T))
True-false evaluation tuple by tuple
WHERE clause as compound logical statement

2.1.15. SQL Queries
Produces a relation/set of tuples
Can be used to extract a single tuple
e.g. SELECT bday, age

FROM student
WHERE fname='Tim' AND lname='Smith'
Result = (13-05-80, 20)

Argument quoting (')
SQL poisoning
Not null
Not numeric values

MySQL Attribute quoting (`)
Hypothetical attribute `all`, all, and ALL

SQL poisoning is a vulnerability exposed by inadequate escaping of arguments/variables used to compose

2.1. Queries http://www.lightenna.com/book/export/s5/153

7 of 11 16/02/2007 08:41

SQL queries.

E.g. Tim in previous example, could be Tim'; DELETE FROM student;' SELECT * FROM student WHERE 1

2.1.16. Renaming and referencing
AS keyword
(Partial) Attribute renaming in projection list

SELECT fname AS firstName, minit, lname AS surname...
Role names for relations

SELECT S.FNAME, F.FNAME, S.LNAME
FROM STUDENT AS S, STUDENT AS F
WHERE S.LNAME=F.LNAME

(Total) Attribute renaming in FROM
SELECT s.firstName, s.surname

FROM student AS s(firstName,surname,DOB,NINO,tutor)
Wildcards (SELECT s.* FROM...)

2.1.17. SQL Tables
Relations are bags, not sets

e.g. projection of non-key attributes
Set cannot contain duplicate item/repetition
Duplicates exist in bags and be:

SELECT DISTINCT (eliminated)
SELECT ALL (ignored/kept)

2.1.18. Queries and Joins
Relational database allows inter-related data
SQL select FROM gives Cartesian product
WHERE clause defines join condition

SELECT proj.pnum, mgr.ssn
FROM project AS proj, employee AS mgr
WHERE proj.mgrssn = mgr.ssn;

Alternatively, explicitly define join (note type)
SELECT project.pnum, employee.ssn
FROM project INNER JOIN employee
ON project.mgrssn = employee.ssn;

2.1.18b. Outer joins
Outer joins are crucial in the real-world

2.1. Queries http://www.lightenna.com/book/export/s5/153

8 of 11 16/02/2007 08:41

Databases often contain NULLs (3VL)
Analysis of where the crucial data is across a relationship
Previous example, only get project data for managed projects

SELECT project.*, employee.*
FROM project INNER JOIN employee
ON project.mgrssn = employee.ssn;

2.1.18c. Outer joins (cont)
Scale of loss isn't always instantly obvious
NULLs often used unpredicably
May want project information, even if no employee attached as manager

SELECT project.*, employee.*
FROM project LEFT OUTER JOIN employee
ON project.mgrssn = employee.ssn;

2.1. Queries http://www.lightenna.com/book/export/s5/153

9 of 11 16/02/2007 08:41

2.1.19. 2y and 3y joins
Queries can encapsulate any number of relations

Even one relation many times (in different roles)
Relationship chain
Across many relations

Tuples as Entities OR Relationships
e.g. Employee -> Works_on -> Project -> Department ->
Manager

2.1.20. Recursive closure
Can’t be done in SQL2
Recursive relationships
Unknown number of steps
SQL2 can’t generalise in single query

2.1.21. Nested queries
Essential one or more (inner) queries within an (outer) query
Inner and outer query
Not to be confused with inner and outer joins
Inner query can go in three places

SELECT clause (projection list)
Must return a single value, then aliased as attribute in outer result

FROM clause
Inner query result used as standard table in FROM cross product

WHERE clause

2.1.21b. Nexted query example
Use of query result as comparator for other (outer) query

SELECT DISTINCT course
FROM dept WHERE course IN (

SELECT d.course
FROM dept AS d, faculty AS f, student AS s
WHERE d.ownfac=f.id AND s.owndept=d.id
AND f.name='Eng' AND s.year='3'

) OR course IN (
SELECT course
FROM dept
WHERE code LIKE 'COMS3%');

2.1. Queries http://www.lightenna.com/book/export/s5/153

10 of 11 16/02/2007 08:41

2.1.22. Bridging SQL across 3 tiers
Three tier database design
Changing role of DBMS
Indices
Aggregate functions (conceptual)

Over bags and sub-bags
Creating and updating views (ext)
SQL embedding

In this subsection we look at the different roles SQL play across the three tiers of database design. We discuss
the areas in which SQL is lacking and how those difficiencies can be complemented by embedding SQL in
other languages.

2.1.25. Indices
Low/Internal level
Index by one attribute
For queries selecting by that attribute:

Faster tuple access (ordered tuples)
Reduces database memory load

Small cross product relation, only crosses requisites
Accelerates query resolution time

CREATE INDEX Index_Name ON RELATION(Attribute);

2.1.26. Aggregate functions
Run over groups of tuples
Takes a projected attribute list as an argument
Produce relation with single tuple
SUM, MAX, MIN, AVG, COUNT
e.g. AggFunc over all tuples

SELECT SUM(SALARY), MAX(SALARY), MIN(SALARY)

2.1. Queries http://www.lightenna.com/book/export/s5/153

11 of 11 16/02/2007 08:41

FROM EMPLOYEE;
Single attribute lists (distinct values)
Multi-attribute lists (granularity of distinct values by pairing)

2.1.27. Aggregates over sub-bags
Can run over subsets of tuples
GROUP BY keyword
Specifies the grouping attributes
Need to also appear in projected attr_list
Show result along side value for group attr
e.g. AggFunc over subgroups

SELECT dno, COUNT(*)
FROM employee
GROUP BY dno

Quick SQL check, do all attributes in the SELECT projection list appear in the GROUP BY projection list.

2.1.28. Creating views
Views are partial projections
Virtual relations, or views of live relations
Update synchronised

CREATE VIEW <virtual_relname>
AS <real_relation>

Real relation could be a query result
Clever bit is the change propagation
UPDATEs made to the view dataset are flooded back to relations

INSERT and DELETE behaviour needs to be defined
Non-trivial as INSERT into view (virtual relation) may leave holes in real relation

2.1.29. Embedding SQL
SQL (alone) can do lots of clever things in one expression
But can only execute a single expression
Can structure SQL commands into proper programming languages
Java Database Connection (JDBC)

javac, then java VM
COBOL, C or PASCAL

precompiled with PRO*COBOL or PRO*C
Procedure Language (PL/SQL)

Oracle/MySQL procedural language
Stored procedures can take parameters

