3.2. Normal Forms

In this lecture we look at... [Section notes PDF 121Kb]

3.2.01. Orthogonal design

- Information Principle:
 - The entire information content of the database is represented in one and only one way, namely as explicit values in column positions in tables
- Implies that two relations cannot have the same meaning
 - unless they explicitly have the same design/attributes (including name)

3.2.02. Normalization

- Reduced redundancy
- Organised data efficiently
- Improves data consistency
 - $\circ\,$ Reduces chance of update anomalies
 - $\circ\,$ Data duplicated, then updated in only one location
- Only duplicate primary key
 - All non-key data stored only once
- Data spread across multiple tables, instead of one Universal relation R

3.2.03. Good or bad?

- Depends on Application
- OLTP (Transaction processing)
 - Lots of small transactions
 - Need to execute updates quickly
- OLAP (Analytical processing/DSS)
 - Largely Read-only
 - Redundant data copies facilitate Business Intellegence applications, e.g. star schema (later)
- 3NF considered 'normalised'
 - save special cases

3.2.04. Normal forms (1NF)

- First Normal form (1NF)
 - Disallows multivalued attributes
 - $\circ~$ Part of the basic relational model

- Domain must include only atomic values • simple, indivisible
- Value of attribute-tuple in extension of schema
- $t[A_i] \in (A_i)$

3.2.05. Normalisation (1NF)

- Remove fields containing comma separated lists
- Multi-valued attribute (A_{MV}) of R_i
- Create new relation (R_{NEW})
 - \circ with FK to R_i[PK]
 - \circ R_{NEW}(UID, A_{MV}, FK_I)

3.2.06. Normalisation (1NF)

- On weak entity
- On strong entity

Person	Dietary requirements	1
Bob	No eggs	1 >
Fred	No meat, diary or gluten	
Jamal	No fish	

PersonDietStrong						
ID	Person	Dietary requirements				
1	Bob	No eggs				
2	Fred	No meat, diary or gluten				
3	Jamal	No fish				

PersonDietWeak1NF						
Person	Dietary requirements					
Bob	No eggs					
Fred	No meat					
Fred	No dairy					
Fred	No gluten					
Jamal	No fish					

ID	Person	DietFK
1	Bob	1
2	Fred	2
3	Jamal	3

Di	eđ.	11	N	F	k

ID	Requirement				
1	No eggs				
2	No meat				
2	No dairy				
2	No gluten				
3	No fish				

3.2.07. Normal forms (2NF)

- A relation R_i is in 2NF if:
 - \circ Every nonprime attribute A in R_i is
 - \circ fully functionally dependent on 1y key of R
- If all keys are singletons, guaranteed
- If R_i has composite key are
 - $\circ~$ all non-key attributes fully functionally dependent
 - on all attributes of composite key?

3.2.08. Normal forms (2NF)

- Second normal form (2NF)
 - \circ Full functional dependency $X \rightarrow Y$
 - $A \in X$, $(X \{A\}) \rightarrow Y$
- If any attribute A is removed from X
- Then $X \to Y$ no longer holds
 - Partial functional dependency
 - $\circ A \in \mathbf{X}, (\mathbf{X} \{\mathbf{A}\}) \to \mathbf{Y}$

3.2.09. Normal forms (2NF)

- In context
 - $\circ \text{ Not 2NF: AB} \rightarrow \text{C}, \text{A} \rightarrow \text{C}$
 - $AB \rightarrow C$ is not in 2NF, because B can be removed
 - $\circ \text{ Not 2NF: AB} \rightarrow \text{CDE, B} \rightarrow \text{DE}$
 - because attributes D&E are dependent on part of the composite key (B of AB), not all of it

3.2.10. Normalisation (2NF)

• Split attributes not depended on all of the primary key into separate relations

		CarDealer	9		56	199		Car	5
carlD	model	dealeriD	dealerPostCode	listPrice	cost		carlD	model	listPrice
1	316	1	8S8 10B	12595	11995	+>	1	316	12595
1	316	2	BS16 6LR	12595	12050		2	3204	17995
2	320 d	1	BS8 1UB	17995	16000				
						1.1		Dealer	
A	B	C	D	E	F			dealertD	dealerPostCode
								1	BS8 1UB
A -> BE								2	BS16 6LR
C->D AC->F								DealerCarl	Costs
							carID	dealerID	cest
							1	1	11995
							1	2	12050
							2	1	16000

3.2.11. Normal forms (BCNF)

- Boyce-Codd Normal form (BCNF)
 - Simpler, stricter 3NF
 - BCNF \rightarrow 3NF
 - 3NF does not imply BCNF
 - $\circ\,$ nontrivial functional dependency $X \to Y$
 - Then X must be a superkey

3.2.12. Normal forms (3NF)

- Third Normal form (3NF)
- Derived/based on transitive dependency

- For all nontrivial functional dependencies $X \rightarrow A$
- Either X must be a superkey
- Or A is a prime attribute (member of a key)

3.2.13. Normal forms in context

- $AB \rightarrow C, C \rightarrow D, D \rightarrow A$
- In context
 - 3NF? Yes
 - Because AB is a superkey and
 - D and A are prime attributes
 - BCNF? No
 - Because C and D are not superkeys
 - (even though AB is)

3.2.14. Normalisation (3NF)

- CarMakes not in 3NF because:
 - singleton key A
 - $\circ \,$ non-trivial fd $B \rightarrow C$
 - B not superkey, C not prime attribute

CarMakes				Car		
carID	make	makeHeadOffice		carID	make	
1	Audi	NW1 8TQ	->	1	Audi	
2	BMW	SW4E 9GG		2	BMW	
3	Ford	LE17 9EE		3	Ford	
A	в	с		FK(make) to Make(make) Make		
A -> B	C			make	makeHeadOffice	
B -> C				Audi	NW1 8TQ	
				BMW	SW4E 9GG	
				Ford	LE17 9EE	