
3.4. Type Inheritance and EER diagrams http://www.lightenna.com/book/export/s5/158

1 of 5 05/03/2007 07:36

3.4. Type Inheritance and EER diagrams
In this lecture we look at...
[Section notes PDF 117Kb]

3.4.01. Introduction
Design/schema side (Entity types)
Object-orientated concepts

Java, C++ or UML
Sub/superclasses and inheritance

EER diagrams
EER to Relational mapping

3.4.02. OO
Inheritance concept

Attributes (and methods)
Subtypes and supertypes
Specialisation and Generalisation
ER diagrams

show entities/entity sets
EER diagrams

show type inheritance

additional 8th step to ER�Relational mapping

3.4.03. Objects
Basic guide to Java
Object, classes as blueprints
Object, collection of methods and attributes
Miniworld model of real world things
Object, entity in database terms

3.4.04. Abstract
Similar objects
Car Park example
Student example
Shared properties/attributes
Generalisation



3.4. Type Inheritance and EER diagrams http://www.lightenna.com/book/export/s5/158

2 of 5 05/03/2007 07:36

Reverse, specialisation

3.4.05. Relationships
Using English as model
‘Is a’ (inheritance)
‘Has a’ (containment)
Nouns as objects
Verbs as methods
Adjectives as variables (sort of)

3.4.06. Classes
Superclasses (Student)
Subclasses (Engineer, Geographer, Medic)
Inheritance
Subclass inherits superclass attributes

Union of specific/local and general attributes
Inheritance chains

Person � Student � Engineer � Computer Scientist

3.4.07. EER Fruit example
Partial participation
Disjoint subclasses
A fruit may be either a pear or an apple or a banana, or none of them. A fruit may not be a pear and a
banana, an apple and a banana, an apple and a pear …

3.4.08. EER Wine example
Total, disjoint
Equivalent to Java Abstract classes
A Wine has to be either Red, White or Rosé cannot be both more



3.4. Type Inheritance and EER diagrams http://www.lightenna.com/book/export/s5/158

3 of 5 05/03/2007 07:36

3.4.09. More extended (EER)
Specialisation lattices

and Hierarchies
Multiple inheritance
Union of two superclasses (u in circle)
In addition to basic ER notation

3.4.10. EER diagramatic notation
Subset symbol to illustrate
sub/superclass relationship
direction of relationship
Circle to link super to subclasses

Disjoint
Overlapping
Union

3.4.11. Disjointness constraint
Disjointness (d in circle) – single honours
Overlapping (o in circle) – joint honours/sports
Membership condition on same attribute

attribute-defined specialisation
defining attribute
implies disjointness

versus user-defined
each entity type specifically defined by user

3.4.12. Completeness constraint
Total specialisation

Every entity in the superclass must be a member of atleast 1 subclass
Double line (as ER)



3.4. Type Inheritance and EER diagrams http://www.lightenna.com/book/export/s5/158

4 of 5 05/03/2007 07:36

Partial specialisation
Some entites may belong to atleast 1 subclass, or none at all
Single line

Yields 4 possibilities
(Total-Dis, Total-Over, Partial-Dis, Partial-Over)

3.4.13. EER Chip example
Total, overlapping
A Chip may has to be at least one of FPA Unit, Reg Block, L1 Cache, and may be more than one type

3.4.14. EER Multiple inheritance
Type hierarchies
Specialisation lattices
Well, sir, the Supreme Court of the United States has determined that the tomato is for legal and 
commercial purposes both a fruit and a vegetable. So we can legally refer to tomato juice as 
'vegetable' juice.
Candice, General Foods



3.4. Type Inheritance and EER diagrams http://www.lightenna.com/book/export/s5/158

5 of 5 05/03/2007 07:36

3.4.15. EER to Relational Mapping
Initially following 7 ER stages
Stage 8
4 different options

Optimal solution based on problem
Let C be superclass, S1..m subclasses

3.4.16. Stage 8
Create relation for C, and relations for S1..m each with a foreign key to C (primary key)
Create relations for S1..m each including all attributes of C and its primary key

3.4.17. Stage 8
Create a single relation including all attributes of C � S1..m and a type/discriminating attribute

only for disjoint subclasses
Create a single relation as above, but include a boolean type flag for each subclass

works for overlapping, and also disjoint


