
4. Distributed systems
This is the Distributed systems course theme.

[Complete set of notes PDF 109Kb]

4.1. Transaction processing
In this lecture we look at...
[Section notes PDF 86Kb]

4.1.01. Distributed Databases
� Transactions
� Unpredictable failure

� Commit and rollback
� Stored procedures
� Brief PL overview

� Cursors

4.1.02. Transactions
� Real world database actions
� Rarely single step
� Flight reservation example

� Add passenger details to roster
� Charge passenger credit card
� Update seats available
� Order extra vegetarian meal

4.1.04. Desirable properties of transactions

ACID test
� Atomicity

� transaction as smallest unit of processing
� transactions complete entirely or not at all

� consequences of partial completion in flight example
� Consistency

� complete execution preserves database constrained state/integrity
� e.g. Should a transaction create an entity with a foreign key then the reference entity

must exist (see 4 constraints)

Page 1 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

4.1.05. ACID test continued
� Isolation

� not interfered with by any other concurrent transactions
� Durable (permanency)

� commited changes persist in the database, not vulernable to failure

4.1.06. Commit
� Notion of Commit (durability)
� Transaction failures

� From flight reservation example
� Add passenger details to roster
� Charge passenger credit card
� Update seats available: No seats remaining
� Order extra vegetarian meal

� Rollback

4.1.07. PL/SQL overview
� Language format

� Declarations
� Execution
� Exceptions
� Handling I/O
� Functions
� Cursors

4.1.08. PL/SQL
� Blocks broken into three parts

� Declaration
� Variables declared and initialised

� Execution
� Variables manipulated/actioned

� Exception
� Error raised and handled during exec

�
DECLARE
 ---declarations
BEGIN
 ---statements
EXCEPTION
 ---handlers

END ;

4.1.09. Declaration
� DECLARE

Page 2 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

� age NUMBER;
� name VARCHAR(20);
� surname employee.fname%TYPE;
� addr student.termAddress%TYPE;

4.1.10. Execution
� BEGIN (not in order)

� /* sql_statements */
� UPDATE employee SET salary = salary+1;

� /* conditionals */
� IF (age < 0) THEN

� age: = 0;
� ELSE

� age: = age + 1;
� END IF;

� /* transaction processing */
� COMMIT; ROLLBACK;

� /* loops */ /* cursors */
� [END;] (if no exception handling)

4.1.11. Exception passing
� Beginnings of PL I/O
� CREATE TABLE temp (logmessage varchar(80));

� Can create transfer/bridge relation outside

� Within block (e.g. within exception handler)

� WHEN invalid_age THEN
� INSERT INTO temp VALUES(‘Cannot have negative ages’);

� END;

� SELECT * FROM temp;

� To review error messages

4.1.12. Exception handling
� DECLARE

� invalid_age exception;
� BEGIN

� IF (age < 0) THEN
� RAISE invalid_age

� END IF;
� EXCEPTION

� WHEN invalid_age THEN
� INSERT INTO temp VALUES(‘Cannot have negative ages’);

� END;

Page 3 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

4.1.13. Cursors
� Cursors

� Tuple by tuple processing of relations
� Three phases (two)

� Declare
� Use
� Exception (as per normal raise)

4.1.14. Impact
� PL blocks coherently change database state
� No runtime I/O
� Difficult to debug
� SQL tested independently

4.1.15. PL Cursors
� DECLARE
� name_attr EMPLOYEE.NAME%TYPE;
� ssn_attr EMPLOYEE.SSN%TYPE;
� /* cursor declaration */
� CURSOR myEmployeeCursor IS

� SELECT NAME,SSN FROM EMPLOYEE
� WHERE DNO=1
� FOR UPDATE;

� emp_tuple myEmployeeCursor%ROWTYPE;

4.1.16. Cursors execution
� BEGIN
� /* open cursor */
� OPEN myEmployeeCursor;
� /* can pull a tuple attributes into variables */
� FETCH myEmployeeCursor INTO name_attr,ssn_attr;
� /* or pull tuple into tuple variable */
� FETCH myEmployeeCursor INTO emp_tuple;
� CLOSE myEmployeeCursor;

� [LOOP…END LOOP example on handout]

4.1.17. Concurrency Introduction
� Concurrent transactions
� Distributed databases (DDB)

Page 4 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

� Fragmentation
� Desirable transaction properties
� Concurrency control techniques

� Locking
� Timestamps

4.1.18. Notation
� Language

� PL too complex/long-winded
� Simplified database model

� Database as collection of named items
� Granularity, or size of data item
� Disk block based, each block X

� Basic transaction language (BTL)
� read_item(X);
� write_item(X);
� Basic algebra, X=X+N;

4.1.19. Transaction processing
� DBMS Multiuser system

� Multiple terminals/clients
� Single processor, client side execution

� Single centralised database
� Multiprocessor, server
� Resolving many transactions simultaneously

� Concurrency issue
� Coverage by previous courses (e.g. COMS12100)
� PL/SQL scripts (Transactions) as processes

� Interleaved execution

4.1.20. Transactions
� Two transactions, T1 and T2

� Overlapping read-sets and write-sets
� Interleaved execution
� Concurrency control required
� PL/SQL example

� Commit; and rollback;

4.1.21. Concurrency issues
� Three potential problems

� Lost update
� Dirty read
� Incorrect summary

� All exemplified using BTL
� Transaction diagrams to make clearer

Page 5 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

� C-like syntax for familiarity
� Many possible examples of each problem

4.1.22. Lost update

� T1 X update overwritten

4.1.23. Dirty read (or Temporary update)

� T2 reads temporary incorrect value of X

4.1.24. Incorrect summary

T1
read_item(X);
X=X-N;

write_item(X);
read_item(Y);

Y=Y+N;
write_item(Y);

T2

read_item(X);
X=X+M;

write_item(X);

T1
read_item(X);
X=X-N;
write_item(X);

<T1 fails>
<T1 rollback>

read_item(X);
X=X+N;
write_item(X);

T2

read_item(X);
X=X+M;
write_item(X);

T1

read_item(X);
X=X-N;
write_item(X);

read_item(Y);

T2
sum=0;
read_item(A)
sum=sum+A;

read_item(X);
sum=sum+X;
read_item(Y);

Page 6 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

� T2
sums after X-N and before Y-N

4.1.25. Serializability
� Schedule S is a collection of transactions (Ti)

� Serial schedule S1
� Transactions executed one after the other
� Performed in a serial order
� No interleaving
� Commit or abort of active transaction (Ti) triggers

execution of the next (Ti+1)
� If transactions are independent

� all serial schedules are correct

4.1.26. Serializability
� Serial schedules/histories

� No concurrency
� Unfair timeslicing

� Non-serial schedule S2 of n transactions
� Serializable if

� equivalent to some serial schedule of the same n transactions
� correct

� n! serial schedules, more non-serial

4.1.27. Distribution
� DDB, collection of

� multiple logically interrelated databases
� distributed over a computer network
� DDBMS

� Multiprocessor environments
� Shared memory
� Shared disk
� Shared nothing

4.1.28. Advantages
� Distribution transparency

� Multiple transparency levels
� Network
� Location/dept autonomy
� Naming
� Replication
� Fragmentation

� Reliability and availability

Y=Y-N;
write_item(Y);

sum=sum+Y;

Page 7 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

� Performance, data localisation
� Expansion

4.1.29. Fragmentation
� Breaking the database into

� logical units
� for distribution (DDB design)

� Global directory to keep track/abstract
� Fragmentation schema/allocation schema

� Relational
� Horizontal

� Derived (referential), complete (by union)
� Vertical
� Hybrid

4.1.30. Concurrency control in DDBs
� Multiple copies
� Failure of individual sites (hosts/servers)
� Failure of network/links
� Transaction processing

� Distributed commit
� Deadlock

� Primary/coordinator site - voting

4.1.31. Distributed commit
� Coordinator elected
� Coordinator prepares

� writes log to disk, open sockets, sends out queries
� Process

� Coordinator sends ‘Ready-commit’ message
� Peers send back ‘Ready-OK’
� Coordinator sends ‘Commit’ message
� Peers send back ‘Commit-OK’ message

4.1.32. Query processing
� Data transfer costs of query processing

� Local bias
� High remote access cost
� Vast data quantities to build intermediate relations

� Decomposition
� Subqueries resolved locally

4.1.33. Concurrency control

Page 8 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

� Must avoid 3+ problems
� Lost update, dirty read, incorrect summary
� Deadlock/livelock - dining example

� Data item granularity
� Solutions

� Protocols, validation
� Locking
� Timestamps

4.1.34. Definition of terms
� Binary (two-state) locks
� locked, unlocked associated with item X
� Mutual exclusion
� Four requirements

� Must lock before access
� Must unlock after all access
� No relocking of already locked
� No unlocking of already unlocked

4.1.35. Definition
� Multiple mode locking
� Read/write locks
� aka. shared/exclusive locks
� Less restrictive (CREW)
� read_lock(X), write_lock(X), unlock(X)

� e.g. acquire read/write_lock
� not reading or writing the lock state

4.1.36. Rules of Multimode locks
� Must hold read/write_lock to read
� Must hold write_lock to write
� Must unlock after all access
� Cannot upgrade/downgrade locks

� Cannot request new lock while holding one
� Upgrading permissable (read lock to write)

� if currently holding sole read access
� Downgrading permissable (write lock to read)

� if currently holding write lock

4.2. Concurrency protocols
In this lecture we look at...
[Section notes PDF 37Kb]

Page 9 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

4.2.01. Introduction
� Concurrency control protocols
� Concurrency techniques

� Locks, Protocols, Timestamps
� Multimode locking with conversion

� Guarenteeing serializability
� Associated cost
� Timestamps and ordering

4.2.02. Guarenteeing serializability
� Two phase locking protocol (2PL)

� Growing/expanding
� Acquisition of all locks
� Or upgrading of existing locks

� Shrinking
� Release of locks
� Or downgrading

� Guarentees serializability
� equivalency without checking schedules

4.2.03. A typical transaction pair

� Violates rules of two phase locking
� unlock occurs during locking/expanding phase

4.2.04. 2PL: Guaranteed serializable

T1

read_lock(Y);
read_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X=X+Y;
write_item(X);
unlock(X);

T2

read_lock(X);
read_item(X);
unlock(X);

write_lock(Y);
read_item(Y);
Y=X+Y;
write_item(Y);
unlock(Y);

T1

read_lock(Y);
read_item(Y);

T2

read_lock(X);
read_item(X);

Page 10 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

� Less

efficient (cost), but serializable

4.2.05. Guarantee cost
� T2 ends up waiting for read access to X

� Either after T1 finished
� T1 cannot release X even though it has finished using it
� Incorrect phase (still expanding)

� Or before T1 has used it
� T1 has to claim X during expansion, even if it doesn’t use

it until later
� Cost: limits the amount of concurrency

4.2.06. Alternatives
� Concurrency control

� Locks limit concurrency
� Busy waiting

� Timestamp ordering (TO)
� Order transaction execution

� for a particular equivalent serial schedule
� of transactions ordered by timestamp value

� Note: difference to lock serial equivalent
� No locks, no deadlock

4.2.07. Timestamps
� Unique identifier for transaction (T)
� Assigned in order of submission

� Time
� linear time, current date/sys clock - one per cycle

� Counter
� counter, finite bitspace, wrap-around issues

� Timestamp aka. Transaction start time
� TS(T)

4.2.08. Timestamping
� DBMS associates two TS with each item

write_lock(X);
unlock(Y);
read_item(X);
X=X+Y;
write_item(X);
unlock(X);

write_lock(Y);
unlock(X);
read_item(Y);
Y=X+Y;
write_item(Y);
unlock(Y);

Page 11 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

� Read_TS(X): gets read timestamp of item X
� timestamp of most recent successful read on X
� = TS(T) where T is youngest read transaction

� Write_TS(X): gets write timestamp of item X
� as for read timestamp

4.2.09. Timestamping
� Transaction T issues read_item(X)

� TO algorithm compares TS(T) with Write_TS(X)
� Ensures transaction order execution not violated

� If successful,Write_TS(X) <= TS(T)
� Read_TS(X) = MAXTS(T), current Read_TS(X)

� If fail,Write_TS(X) > TS(T)
� T aborted, rolled-back and resubmitted with new TS
� Cascading rollback

4.2.10. Timestamping
� Transaction T issues write_item(X)

� TO algorithm compares TS(T) with Read_TS(X) and compares TS(T) with Write_TS
(X)

� If successful, op_TS(X) <= TS(T)
� Write_TS(X) = TS(T)

� If fail, op_TS(X) > TS(T)
� T aborted, cascade etc.

� All operations focus on not violating the execution order defined by the timestamp ordering

4.2.11. Updates
� Insertion

� 2PL: DBMS secures exclusive write-lock
� TOA: op_TS(X) set to TS(creating transaction)

� Deletion
� 2PL: as insert
� TOA: waits to ensure later transactions don’t access

� Phantom problem
� Record being inserted matches inclusion conditions
� of another transaction

(e.g. selection by dno=5)
� Locking doesn’t guarantee inclusion

(need index locking)

Page 12 of 124. Distributed systems

16/03/2007http://www.lightenna.com/book/export/s5/107

