5.2. Decision Support

In this lecture we look at...

5.2.01. Introduction

- Decision support systems (DSS)
- Duplicates of live systems, historical archiving
- Primarily read-only
- Load and refresh operations
- Integrity
 - Assumptions about initial data
- Large, indexed, redundancy

5.2.02. DSS Management

- Design
 - Logical
 - Temporal keys, required to distinguish historical data (since:to current & during:within interval)
 - Physical (Hash indexes, Bitmap indexes)
 - Controlled Redundancy
 - Synchronisation/update propogation
 - Synchronous (update driven)
 - Asynchronous (query driven)

5.2.03. Data Preparation

- Extract
 - pulling from live database system(s)
- Cleansing
- Transformation and Consolidation
 - o migrating from live or legacy system design

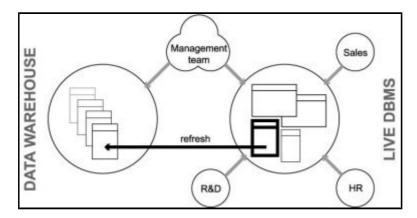
to DSS design

- Load (DSS live/query-able)
- Refresh (latest update)

5.2.04. Querying

- Boolean expression complexity
 - heavy WHERE clauses
- Join complexity
 - Normalised databases, many tables
 - Facts distributed across tables

1 of 3 25-2-07 4:19 pm


- Joins required to answer complex questions
- Function and Analytic complexity
 - o Often require non-DBMS functions
 - o Smaller queries with interleaved code

5.2.05. Data Warehouse

- Specific example of DSS
- Subject-orientated
 - o e.g. customers/products
- Non-volatile
 - o once inserted, items cannot be updated
- Time variant
 - Temporal keys
- Accuracy and granularity issues

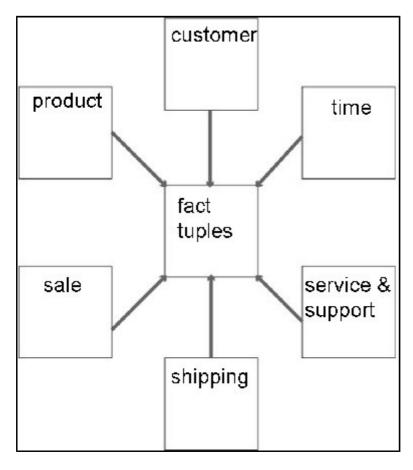
5.2.06. DB Company organisation

• By example

5.2.07. Dimensional Schema

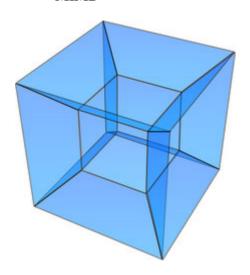
- Consider product, customer, sales data
- Each sale represents a specific event
 - when a product was purchased
 - when a customer bought something
 - o when a sale was recorded
- Each can be thought of as an axis

or dimension (3D)


• Each occurred at a moment in time (4D)

5.2.08. Star schemae and Hypercubes

• Data centralised in 'fact' table


2 of 3 25-2-07 4:19 pm

- Referencing creates star pattern
- Dimensions as satellite tables
- Normalising creates snowflake schema

5.2.09. Hypercubes

- Hypercube is also a multi-processor topology inspired by a 4D shape
- Used by Intel's iPSC/2
- Good at certain database operations
- e.g. Duplicate removal
- MIMD

3 of 3 25-2-07 4:19 pm