
Databases http://www.lightenna.com/book/export/s5/101

1 of 84 25-2-07 4:23 pm

Databases
The Database Training course is structured into five sections.

1. Data models
This is the Data models course theme. In this section we introduce concepts for modelling data and
language for communicating those models.
[Complete set of notes PDF 870Kb].

1.1. Introduction
Databases are pervasive in modern society. So many of our actions and attributes are logged and stored in
organised information repositories, or Databases
[Section notes PDF 227Kb].

1.1.01. Databases
Where do we come into contact with databases?
Supermarket inventories/EPOS

Supplies, shopping habits, store locations, accounts
Films (iMDB)

Cast lists, shooting schedules, histories, budgets
Department

Students, courses, staff, payroll

These are all examples of relatively simple databases. All of the information is textual or referential.

1.1.02. New technologies
Not just traditional, numeric/textual
Research 70s biased
Digital media

Video servers (atom/bbc/youtube)
Multimedia databases

Web site, collection of diverse data types
Google, AltaVista

Stock Exchange
Futures, Currency markets, trends
Databases comprising not only data, but modelling algortihms

Microsoft's WinFS

Databases don't have to store just text. Increasingly Database servers are storing, indexing and delivering
rich-media content, explicitly images, audio and video.



Databases http://www.lightenna.com/book/export/s5/101

2 of 84 25-2-07 4:23 pm

Microsoft's next generation File storage system (WinFS) is a relational database. From a user perspective,
searching (the process of indexing content by keyword) is already mainstream. Users are moving away
from rigid directory structures (files and folders) and towards keyword-tagged content.

1.1.03. Variations
Not only in role
Size

Video server example
Complexity

Ford Puma™ example
Ford staff organised by production line and car
e.g. Each staff member answers to a 'part' manager (engines, bodyshell, chassis) and a 'car' 
manager (Puma, Mondeo, Ka)

Expense
User profiles and demands

We've seen that databases are used in a variety of contexts. Those roles imply properties of each of the
systems. An interlinked text-only database (such as Unix/Linux's MAN pages) will require much less
storage than a video archive.

Some databases are perceptually more complex. Ford's staff management model would be represented as a
matrix (in this case 2 dimensional). Computers are very good at organising multi-dimensional space.

1.1.04. Definition
Embrace diversity
Data and semantic
Database: related data, implicit meaning
Sample/subset of real world

real world with bounds
Miniworld/Universe of Discourse

A single definition of a database is hard to come by. Dictionary.com defines a database as: a 
comprehensive collection of related data organized for convenient access, generally in a computer. The 
Wikipedia definition runs for several pages.

1.1.05. Abstraction
Previous lab exercises

Problem: reading data from a file
Abstraction theme
Basis of good OOP and further good P

from encapsulation to software component analysis
Layering, splitting data from design

Solution: grammar (language guide) and data

In some of your previous lab assignments, or practical experience, you may have been faced with the 
problem of caching information persistently in a file, later to be reloaded.



Databases http://www.lightenna.com/book/export/s5/101

3 of 84 25-2-07 4:23 pm

When writing the data into the file, we are storing more than just that information. We are storing
implicitly a design/grammar for that data. That implicit design is evident when accessing the file with a
naive interface. If you try to read the data out in a different order, it fails.

A better solution is to split the way the information is stored from the actually information stored.

1.1.06. Data-design divide
Left-hand/right-hand divide
LHS: Catalog

or Meta-data
or Intension
or Schema
i.e. the Design of database
Types of data, organisation, constraints

RHS: Extension
or Snapshot
The data itself
Information stored in the database
Tuples

1.1.07. DBMS
DataBase
Management
System
Collection of programs that enable users to:

Define - patterns, boundaries, design
Construct - populate to go live
Manipulate - runtime changes

data in a structured, organised store.

1.1.08. Database Management Systems



Databases http://www.lightenna.com/book/export/s5/101

4 of 84 25-2-07 4:23 pm

Properties
Data models and independence

Requirements
Categorisation of Database users

DBMS components
Architecture

When considering the database systems as a whole, we need to look at all the components, including 
elements that interact with the DBMS (users, whom we categorise for simplicity).

This course will contain a discussion of the components that make up the system and the way they interact
(system architecture).

1.1.09. Models
Data models
Relational data model (Oracle)
Object data model (ObjectStore)
Legacy systems

Hierarchical data model
Network data model

A data model is an invention. It is a construct that allows us to share an understanding of how the system
works. As with all good constructs, it's an abstraction; a simplification; a story.

In this course we're going to look at the Relational model, where the database is organised into tables 
(relationals) and each row (tuple) within that relation is coded (keyed) to allow referencing between the 
relationals. 

The Relational model, inspite of being innovated in the 1970s is still the most popular, underpining 
mainstream modern databases such as Oracle 10i and MySQL 5.0

As programming languages are becoming increasingly Object orientated, programmers require a means of 
persistently storing their Objects. Object Orientated Databases (OODBs) exist to fulfil this purpose.
OODBs may ultimately replace relational databases, but it's not clear at this stage when.

1.1.10. Other properties
Beside Data model
Number of users
Number of sites
Cost
Types of access paths
Generality, or inversely specificity

MySQL is a highly general database system, in that it supports many different designs. My mobile phone
address book is a highly specific database system and as such is not easily extensible.

1.1.11. Independence



Databases http://www.lightenna.com/book/export/s5/101

5 of 84 25-2-07 4:23 pm

Based on File processing
Data definition implicit in

Data
Application program

Example of one specific database
Structure embedded into access program

Coursework code re-use example

Earlier I made mention of this problem. Databases tie into the wider Software Engineering field. Within
Software Engineering, post-development issues of code re-use, maintenance, future evolution etc. 
necessitate a logical flexible approach to program design. Databases are such an approach. In order to
store information in a database you invest a small amount of time in explicitly structuring it, however you 
then get things like flexibility (data independence etc.) for free.

1.1.12. Program-data independence
General databases

Separate Data definition and data
Catalog/meta-data & tuples

Data format/structure stored separately
Program-data independence (e.g. Y2K)

Changes in data format
Alter data (tuples)
Alter grammar (catalog/meta-data)

We actually split program-data independence into:
Logical
Physical

...more in a second

1.1.13. Program-operation independence
In object-orientated databases

Objects consist of attributes and operations
Operation defined by

Header/Interface/Prototype or Signature
Implementation

Program-operation independence
Implementation change hidden from user

Collectively data abstraction

1.1.14. Logical and physical program-data 
independence

Three tier data-model diagram
Mappings, Data independence

Logical
between conceptual and external
changes to conceptual without changing

external schemas or application programs



Databases http://www.lightenna.com/book/export/s5/101

6 of 84 25-2-07 4:23 pm

Physical
between internal and conceptual
changes to internal without changing

conceptual or external schemas

1.1.15. DBMS Requirements
DataBase Management System

Abstraction (i.e. program-data independence)
Conceptual representation (data models)
Multiple views and User Interfaces
Data sharing and transaction processing
Access restriction
Redundancy removal/optimisation
Persistent storage (Program objects) & Integrity
Relationship management & Inference
Backup and recovery

Here's a summary of what we need from a DBMS

1.1.16. Database Users
Database as 1y resource, DBMS as 2y
Database administrators (DBA)
Database designers
End users

Naïve - canned transactions e.g. bank/airline
Sophisticated - engineers, scientists, query editors
Stand-alone (personal databases/MS Access)

1.1.17. Results of use
Knock-on effects of database approach
Enforcing standards
Reduced Development time
Adaptive to change (design changes)



Databases http://www.lightenna.com/book/export/s5/101

7 of 84 25-2-07 4:23 pm

Up-to-date information (live database)
Economies of scale

centralising commonly required resources

...and this is what you get for free. These are the consequences, largely positive, of adopting a database
approach to an information storage problem.

1.1.18. Design side
Meta-data

Database schema, intension
Data Model
Left hand side of database divide

Schema diagram
Entity-relationship (ER diagrams)
UML diagrams

1.1.19. Data side
Data, under the column heading
Less easy to look at (volume issue)
Fundamentally less interesting (more specific)
Variety of tools for looking at it:

HeidiSQL, PhpMyAdmin, Sword
Here's what a snapshot looks like:



Databases http://www.lightenna.com/book/export/s5/101

8 of 84 25-2-07 4:23 pm

1.1.20. Data model
Data model

Structure of the database
Collection of basic operations
Collection of behaviours/user defined operations

Dependent on level of abstraction
Tier diagram

External (user views)
Conceptual*
Internal

1.1.20. General data model terms
Entity
Relationship
Attributes
Keys

What follows here is an introduction to the terms which make up the language that we use to describe data
models.

1.1.21. Entity
Selected from real world
Populate Miniworld/UoD
Entity is an approximation
Two elements: Entity types and sets
Collection of attributes

Object similarity, classes as entity types
Entities inter-relate



Databases http://www.lightenna.com/book/export/s5/101

9 of 84 25-2-07 4:23 pm

1.1.22. Attributes
Data type, domain
Simple or composite
Single or multivalued
Stored or derived
Null

1.1.23. Keys
Mechanism for unique identification
Uniqueness constraint
Strong and weak entities
Key attribute
Composite keys
Multiple keys

1.1.27. Relationships
Types and Sets
Participation by Entities
Degree - e.g. binary
Cardinality ratios - e.g. 1:1, 1:M

Determine occurrence
Tuples example

Foreign keys



Databases http://www.lightenna.com/book/export/s5/101

10 of 84 25-2-07 4:23 pm

1.1.28. Database architecture
Client-Server
Distributed databases

Fragmentation by attribute/tuple/relation
Language and description

Storage Definition Language (SDL) DESIGN
Data Definition Language (DDL) DESIGN
View Definition Language (VDL) DESIGN
Data Manipulation Language (DML) DATA

High level, can be embedded but precompiled
Procedural, record-at-a-time, requires high level support

1.1.29. Structured Query



Databases http://www.lightenna.com/book/export/s5/101

11 of 84 25-2-07 4:23 pm

Structured Query Language (SQL or SEQUEL)
Success of relational databases

Developed for SystemR at IBM
ANSI standardised

SQL1 or SQL-86, ongoing extension
SQL2 or SQL-92, current version
SQL3 (1999), SQL2003
DDL, DML(low-level) and VDL

1.2. Data models
A data model is a model that describes in an abstract way how data are represented in a business 
organization, an information system or a database management system - Wikipedia
[Section notes PDF 310Kb].

1.2.01. Introduction
Relational model
Abstract operations on relations

Set theoretic operations
Relational-specific operations

Basic algebra operations
Union, Intersection, Difference
Cross product

1.2.02. Relational model
Table as relation
Row as tuple

real world entity or relationship
fact

Column as attribute
Domain

The concept of a relation is abstract, therefore we have a number of different ways of visualising it.



Databases http://www.lightenna.com/book/export/s5/101

12 of 84 25-2-07 4:23 pm

1.2.03. Relation
Relation schema R(A1, A2, A3.. An)

Design side
Assertion/declaration

Relation state
Data side
set of n-tuples

each one an ordered list of values
1NF: each value is atomic, no composite/multivalue

1.2.04. Abstract operations
Database lifecycle

design, populate, evolve
Insert

tuple (a1,a2,a3…an)
Delete

tuple (a1,a2,a3…an)
Update (or modify)

tuple (a1,a2,a3…an)
attribute to change, new value



Databases http://www.lightenna.com/book/export/s5/101

13 of 84 25-2-07 4:23 pm

All the operations described in the next few sections are abstract. We're going to see how valuable they
can be in processing real world data later.

1.2.05. Basic algebra
Two categories

Set theoretic operations
Union, Intersection etc.

Relational specific
Select, project and join

At this stage we're talking about set theoretical operators on the Relational model, not SQL 
instructions which confusingly have identical names and only similar behaviour.

1.2.06. Select operation
SELECT a subset of tuples from a relation

Uses selection condition
Evaluate each tuple to true of false
False tuples discarded

Sigma (s)
output = s(cond)(input_relation)
Relation schema: R(output) = R(input_relation)
Commutative

1.2.07. Project operation
PROJECT a subset of attributes for all tuples from a relation



Databases http://www.lightenna.com/book/export/s5/101

14 of 84 25-2-07 4:23 pm

Pi (p)
p<attribute list>(R)

If sublist is only non-key attributes
might get duplicates

Removes duplicates
Attribute list:sublist example

The result set of the operation is itself a relational. That output relation will contain the same number of
rows as the input, however it may contain a different number of columns; fewer if a subset of attributes is 
projected; more if derived or aggregated attributes are included.

1.2.07. Sequences of operations
Select followed by projection
Area clipping: rows then columns
p<attr list>
(s(select_cond)(R))
Rename operation (r)

Renames attributes list2 from list1
r(new_attr_names)(R)

1.2.08. Rename operation
Attribute renaming only

Cannot alter domain, or add/remove attr
Rename operation (r)

Renames attributes list2 from list1
r(new_attr_names)(R)

Implicit renaming



Databases http://www.lightenna.com/book/export/s5/101

15 of 84 25-2-07 4:23 pm

Order dictated by relational schema

1.2.08. Set Theoretic
Binary operation: two relations

Sets of tuples
Union compatibility (same attributes)

Union (R u S)
Intersection (R n S)

Commutative (R u (S u T) = (R u S) u T)

1.2.08b. Set difference
Set difference

Non-commutative (R-S != S-R)

1.2.09. Cross product
Cartesian product of two relations
R x S



Databases http://www.lightenna.com/book/export/s5/101

16 of 84 25-2-07 4:23 pm

Also known as
Cross product
Cross join

Cross product diagram
Introduction to complexity

Computationally explosive

1.2.10. Relational algebra/model notation
Relational schema R(A1, A2,…,An)
Relation state r or r(R)

Set of unordered tuples
r = {t1, t2,…,tn}

Each n-tuple is an ordered list of values
t = <v1, v2,…,vn>

ith value in t = vi called t[Ai]
r(R) subset of (dom(A1) x dom(A2)... x dom(An))

1.2.11. Constraints
Domain constraint

For all v in t of r(R)
vi is an element of dom(Ai)

Entity constraint
K = SKmin
t[K] != null

Key constraint
Superkey SK as identifying subset of attributes
t1[SK] != t2[SK]

1.2.12. Referential integrity
Given two relations R1 and R2

R1 contains a foreign key (FK) that references
A primary key (PK) in R2



Databases http://www.lightenna.com/book/export/s5/101

17 of 84 25-2-07 4:23 pm

R1 referencing relation, R2 referenced relation
Shared domains: dom(FK) = dom(PK)
Foreign exists: t1 in r(R1), t2 in r(R2)

t1[FK] = t2[PK] || NULL

1.3. Joins
In this lecture we look at...
[Section notes PDF 233Kb].

1.3.01. Introduction
Recap: pulling data out of individual relations

By row, by column
Select and project

Access across multiple relations
Miniworld approximation

Fragmenting entities by cardinality
Tuples as entity fragments
Relationships within relations

Joins
Join types (condition and unmatched)

1.3.02. Access across relations
Relational model allows multiple relations to exist within one database schema
Relations can be accessed individually or together (joins).
Referential integrity

Relations relating
Pulling data out of single relations

Select and project
Pulling related data out of

Multiple relations using Join

1.3.03. Miniworld approximation
Universe of Discourse, or Miniworld
Miniworld is an incomplete model of the real world
The relational data model as a model for the miniworld
Approximation

Separate and distinct entities
Single complex entities
Separate related entities
Cardinality of relationships

Each relation made up of attributes
Values can be used as references



Databases http://www.lightenna.com/book/export/s5/101

18 of 84 25-2-07 4:23 pm

1.3.04. Pointing mechanism
Relation has a Primary key
Tuple contains Primary key value
Foreign keys

Tuples can contain a reference to another relation's Primary key
Just numbers

One number identifies a single tuple in one relation (local), one number identifies a single tuple in another
relation (foreign).

1.3.04b. Pointing mechanism example in C
C programming language
Memory addresses, or pointers

int a=0;
int b=0;
a = &b;

a points to b

In databases, typically done with unique identifiers (IDs) rather than memory addresses.

1.3.04c. Pointing mechanism with structures
Foreign key importing

typedef struct car
{
  int ID;
  char[] make;
  char[] model;
  char[] derivative;



Databases http://www.lightenna.com/book/export/s5/101

19 of 84 25-2-07 4:23 pm

  int optionID;
} car;

typedef struct option
{
  int ID;
  char[] name;
  int price;
} option;

car c;
option o;
//...data structure populating
c.optionID = o.ID;

1.3.05. Relational cardinality
1:0 relationships

Single entity
Uniquely indentifiable
Candidate keys
Primary Key

1:1 relationships
Two entities, A and B
1 A relates to 1 B and vice versa

1:N relationships
M:N relationships

1.3.06. Relationships in the relational model
Two relations, A and B
A side, B side, 1 side, N side
1:1 relationships

Key can go on either side

1:N relationships
Key cannot go on 1 side
Has to go on N side



Databases http://www.lightenna.com/book/export/s5/101

20 of 84 25-2-07 4:23 pm

M:N relationships
Nowhere obvious for the key to go
Create new pairing relation

1.3.07. Joins
Phase change, different point in lifecycle
Join operation

Combines related tuples, conditionally
From two relations
Into single tuples

Allows processing of relationships
Among multiple relations

1.3.08. Joins, canonical algebraic form
Conditional (on join condition)

Only combines tuples where true
Cartesian product (conditionless)

example of conditionless join
all tuples combined
R �true S

�, Binary operator
e.g. R �<join_condition> S

1.3.09. Join equivalence
Equivalent to sequence

Cartesian product (X)
followed by Selection (s)

ACTUAL_DEPENDENTS =
sSSN=ESSN(EMPNAMES X DEPENDENT)
or
ACTUAL_DEPENDENTS =
EMPNAMES � SSN=ESSN(DEPENDENT)

1.3.10. Join types (condition)



Databases http://www.lightenna.com/book/export/s5/101

21 of 84 25-2-07 4:23 pm

Theta: Ai q Bj
(A from R, B from S)

q is comparison operator
=,<,>,!=,>=
Ai and Bj share the same domain

Equi: Ai = Bj
Theta join where q is =

Natural: Ai and Bj are the same attribute
in two separate relations (name and domain)
* denotes natural join
e.g. EMPNAMES * DEPENDENTS

1.3.11. Join types (inner and outer)
Inner joins

not the only joins
eliminate tuples without a matching counterpart
i.e. tuples with a null value for the join attribute are discarded

1.3.12. Outer joins
Outer joins control what's discarded

Keep unmatched tuples in either
Left, right, or both relations
Left, right of full outer join correspondingly



Databases http://www.lightenna.com/book/export/s5/101

22 of 84 25-2-07 4:23 pm

1.4. ER diagrams
In this lecture we look at...
[Section notes PDF 75Kb].

1.4.01. ER Diagrams and Relational mapping
Design communication techniques

ER diagrams
ER to relational mapping

Entities to Objects
Type Inheritance

EER diagrams
UML

Web DB Integration

1.4.03. Design in the modern context
Team based development
Documentation

Value of design over description
DB sketching (left hand side)

Concept more important than perfection
Design iteration

Mini-world as approximation
Categorisation to create entities
Verb’ing to create actions/relationships

1.4.04. Database Left:right divide
Design

Catalog, Meta-data, Intension, or Database schema
Entity type
Relationship type

State
Set of occurences/instances, Extension, snapshot



Databases http://www.lightenna.com/book/export/s5/101

23 of 84 25-2-07 4:23 pm

Entity set
Relationship set

1.4.05. Basic ER diagram
Typically part of a system
(Strong) Entities

Product
Customer
Payment

Relationships
Sale

1.4.06. Mapping ER to Relation DB tables
Intuitive mapping

Entities as tables



Databases http://www.lightenna.com/book/export/s5/101

24 of 84 25-2-07 4:23 pm

Attributes as columns
Relationships are more difficult
Key sharing mechanism

Foreign key references primary key
Where to put the foreign key forms the intuitive guide to the rest of
the mapping

1.4.07. ER to Relational mapping
Step-by-step approach

Strong entities1.
Create relation including (simplified) attributes

Weak entities2.
Create relation inc. attr, foreign/pri key of owner

Binary relationship S:T, 1:13.
Choose relation, say S (with total participation) and inc. foreign/pri
key of T
inc. relationship attributes

1.4.08. Cardinality
Specifies number of relationship instances a single entity can participate in
S:T (1:1)
An entity from table S can is related to one, and only one entity from table T
1:1, 1:N, N:M

DEPARTMENT : EMPLOYEE
EMPLOYEE : EMPLOYEE
PROJECT : EMPLOYEE

1.4.09. ER to Relational mapping
Binary relationship 1:N5.

Choose relation T (N-side) inc. foreign/pri key of S
Binary relationship M:N6.

Create relation, inc. foreign/pri keys of S&T
Multivalued7.

For each mv_attr, create new relation, inc. foreign/pri key of parent
n-ary relationship8.

Create new relation, inc. all foreign/pri keys of participating
entities

1.4.10. Participation
Participation constraints
Existence of an entity dependant upon

being related to another entity
via relationship type (left hand/design)



Databases http://www.lightenna.com/book/export/s5/101

25 of 84 25-2-07 4:23 pm

Total (")/Existence
dependency (double line)

Every student must be in a faculty
For every entity in the total set of students

Partial ($) (single line)
Some students are student_representatives
There exists some entity(s) within the set of all…

1.4.11. Library example
Library example
Entities: Person, Book, Librarian
Time-perspective implications

1.5. UML
In this lecture we look at...
[Section notes PDF 86Kb].

1.5.01. UML diagrams
Not just one type of diagram
ER Entities -> UML objects
Adds scope to include methods



Databases http://www.lightenna.com/book/export/s5/101

26 of 84 25-2-07 4:23 pm

1.5.03. Simple UML relationship diagram
Classes

Attributes
Methods

Relationships
Participation
Cardinality
Roles

1.5.04. UML inheritance
Notion of inheritance

Java parallel
'is a' relationships
Database Student

is a Computer Science Student
is an Engineering Faculty Student

is a Student
is a Person

Inheritance hierarchies
UML diagrams can be used to show inheritance



Databases http://www.lightenna.com/book/export/s5/101

27 of 84 25-2-07 4:23 pm

1.5.05. UML diagram
Classes
Relationships
Inheritance

2. DBMS Systems
This is the DBMS Systems course theme.
[Complete set of notes PDF 482Kb]

2.1. Queries



Databases http://www.lightenna.com/book/export/s5/101

28 of 84 25-2-07 4:23 pm

In this lecture we look at...
[Section notes PDF 319Kb]

2.1.01 Introduction
Methods of getting data out
The need for queries
QBE
SQL (design side)

History
Schemas and relations (CREATE)
Data types and domains
DROP and ALTER

2.1.02. Querying interfaces
High (view) level
Query-By-Example (QBE)

Alternative to SQL
Table driven (visually similar to relations)
Rather than script driven, hence intuitive over learned
Visual or text based

User fills in templates
Microsoft Access approach

2.1.02b. QBE visual example
Record advancing
Query designing

Finite domain attributes
Web search parallel



Databases http://www.lightenna.com/book/export/s5/101

29 of 84 25-2-07 4:23 pm

2.1.03. QBE text-format example
P. print, I. insert, D. delete, U. update
_VARNAME, copy field value into variable

2.1.05. SQL
Structured Query Language

(SQL or SEQUEL)
Wikipedia reference

Success of relational databases
Developed for SystemR at IBM
ANSI standardised
SQL-1986 (SQL1), ongoing extension
SQL-1992 (SQL2), current version (Oracle 9i)
SQL-1999 (SQL3), regular expression matching, recursive queries
SQL-2003, XML features, auto-generated columns

2.1.05b. SQL command syntax
Where follows here is a brief summary

Oracle syntax
Similar but not identical to MySQL/MSSQL

General familiarity
Query writing best learnt by doing it
Lecture live-example
Coursework 1 will be SQL
Oracle (9i) SQL reference
MySQL (5.0) SQL reference

2.1.05c. SQL in application



Databases http://www.lightenna.com/book/export/s5/101

30 of 84 25-2-07 4:23 pm

Keyword oriented language
Keywords not congruous with Relational model
Lots of different ways to write SQL

Analogous to C/Java formatting
if (b==2) { a=1; } else { a=0; }

Recommend using case to differentiate attributes and keywords
SELECT colour, size, shape FROM fruit WHERE weight>22;

Oracle user accounts on Teaching database
Namespace references, e.g. shared.cars

2.1.06. SQL Create schema
Data definition commands
CREATE

SCHEMA <schema_name> AUTHORIZATION <a>
or workspace

Beware of names
Name collisions produce odd behaviours

SQL Schema embraces Tables (relations), constraints, views, domains, authorizations

2.1.07. SQL Create table
CREATE TABLE

<schema_name>.<relation_name>
(

<attribute_definitions>
<key>
<constraints>

)
CREATE TABLE example (Oracle)
Tables can (and should) be indexed by user
e.g. <username>.<tablename>
Normal login implies username
Non-local table access

2.1.08. Data types and domains (Oracle)
Numeric

ENUM
NUMBER, NUMBER(i), NUMBER(i,j)

Formatted numbers, i precision, j scale
(number of digits total, after decimal point)

Character-string
CHAR(n) - n is length
VARCHAR2(n) - n is max

DESCRIBE output example
Multi-database comparison of Datatypes
Database legacy: limited storage necessitated efficient storage
Does it need to be efficient anymore?



Databases http://www.lightenna.com/book/export/s5/101

31 of 84 25-2-07 4:23 pm

You might consider all SQL types as being conceptually similar to attribute types in the relational 
model, although in reality the implementation of these types in a DBMS only approximates the 
mathematical purity of unordered domain sets etc.

2.1.08b. Data types and domains (MySQL)
Numeric

TINYINT, INT, INT UNSIGNED
FLOAT, DOUBLE, DECIMAL
ENUM
Character-string

CHAR(n) - n is length
VARCHAR(n) - n is max
TINYTEXT, TEXT
Beware different default/maximum lengths to Oracle

BLOB
Multi-database comparison of Datatypes

2.1.09. Time-based data types
Date and Time

DATE
Ten positions, components YYYY-MM-DD

TIME
Eight positions, components HH:MM:SS

TIME(i)
Time fractional seconds precision
Adds i+1 positions

TIMESTAMP
optionally WITH TIME ZONE

Very sensitive to syntactical ambiguities
day/month/year/hour/minute separators

2.1.10. DROPing
DROP <object> <obj_name> <flags>
DROP SCHEMA <schema_name> CASCADE

drops all workspace tables, domains
DROP TABLE <relation_name> RESTRICT

only drops table if
not referenced in any constraints/views

Notion of cascading
Table links

2.1.11. ALTERing
Schema evolution
Design side



Databases http://www.lightenna.com/book/export/s5/101

32 of 84 25-2-07 4:23 pm

ALTER TABLE <schema_name>.<relation_name> ADD
<var_name> <var_type>;
Example

ALTER TABLE uni.student ADD hall VARCHAR(32);
Upper and lower case syntax
Naming conventions

2.1.12. Queries
Helper interfaces

HeidiSQL/phpMyAdmin/Sword/SQLplus
Design/perform a lot of routine queries for you
Important to learn SQL, reinforcement
Designing select queries is more difficult
Visual interfaces still lacking in this area

Select queries in SQL
Basic singlets
Renaming
Queries with Joins
Nested queries

2.1.13. SQL Queries
SELECT statement
Similar to relational data model SELECT then PROJECT

SELECT <attribute list>
FROM <table list>
WHERE <condition>;



Databases http://www.lightenna.com/book/export/s5/101

33 of 84 25-2-07 4:23 pm

2.1.14. SQL Queries
SELECT <attr_list>

FROM R,S,T
WHERE DNO = 10

equivalent to
p<attr_list>(sDNO=10 (R X S X T))
True-false evaluation tuple by tuple
WHERE clause as compound logical statement

2.1.15. SQL Queries
Produces a relation/set of tuples
Can be used to extract a single tuple
e.g. SELECT bday, age

FROM student
WHERE fname='Tim' AND lname='Smith'
Result = (13-05-80, 20)

Argument quoting (')
SQL poisoning
Not null
Not numeric values

MySQL Attribute quoting (`)
Hypothetical attribute `all`, all, and ALL

SQL poisoning is a vulnerability exposed by inadequate escaping of arguments/variables used to compose 
SQL queries.

E.g. Tim in previous example, could be Tim'; DELETE FROM student;' SELECT * FROM student 
WHERE 1

2.1.16. Renaming and referencing
AS keyword
(Partial) Attribute renaming in projection list

SELECT fname AS firstName, minit, lname AS surname...
Role names for relations

SELECT S.FNAME, F.FNAME, S.LNAME
FROM STUDENT AS S, STUDENT AS F
WHERE S.LNAME=F.LNAME

(Total) Attribute renaming in FROM
SELECT s.firstName, s.surname

FROM student AS s(firstName,surname,DOB,NINO,tutor)
Wildcards (SELECT s.* FROM...)

2.1.17. SQL Tables
Relations are bags, not sets



Databases http://www.lightenna.com/book/export/s5/101

34 of 84 25-2-07 4:23 pm

e.g. projection of non-key attributes
Set cannot contain duplicate item/repetition
Duplicates exist in bags and be:

SELECT DISTINCT (eliminated)
SELECT ALL (ignored/kept)

2.1.18. Queries and Joins
Relational database allows inter-related data
SQL select FROM gives Cartesian product
WHERE clause defines join condition

SELECT proj.pnum, mgr.ssn
FROM project AS proj, employee AS mgr
WHERE proj.mgrssn = mgr.ssn;

Alternatively, explicitly define join (note type)
SELECT project.pnum, employee.ssn
FROM project INNER JOIN employee 
ON project.mgrssn = employee.ssn;

2.1.18b. Outer joins
Outer joins are crucial in the real-world
Databases often contain NULLs (3VL)
Analysis of where the crucial data is across a relationship
Previous example, only get project data for managed projects

SELECT project.*, employee.*
FROM project INNER JOIN employee
ON project.mgrssn = employee.ssn;

2.1.18c. Outer joins (cont)
Scale of loss isn't always instantly obvious
NULLs often used unpredicably
May want project information, even if no employee attached as manager



Databases http://www.lightenna.com/book/export/s5/101

35 of 84 25-2-07 4:23 pm

SELECT project.*, employee.*
FROM project LEFT OUTER JOIN employee
ON project.mgrssn = employee.ssn;

2.1.19. 2y and 3y joins
Queries can encapsulate any number of relations

Even one relation many times (in different roles)
Relationship chain
Across many relations

Tuples as Entities OR Relationships
e.g. Employee -> Works_on -> Project -> Department ->
Manager

2.1.20. Recursive closure
Can’t be done in SQL2
Recursive relationships
Unknown number of steps
SQL2 can’t generalise in single query

2.1.21. Nested queries
Essential one or more (inner) queries within an (outer) query
Inner and outer query
Not to be confused with inner and outer joins
Inner query can go in three places

SELECT clause (projection list)
Must return a single value, then aliased as attribute in outer result

FROM clause



Databases http://www.lightenna.com/book/export/s5/101

36 of 84 25-2-07 4:23 pm

Inner query result used as standard table in FROM cross product
WHERE clause

2.1.21b. Nested query example
Use of query result as comparator for other (outer) query

SELECT DISTINCT course
FROM dept WHERE course IN (

SELECT d.course
FROM dept AS d, faculty AS f, student AS s
WHERE d.ownfac=f.id AND s.owndept=d.id
AND f.name='Eng' AND s.year='3'

) OR course IN (
SELECT course
FROM dept
WHERE code LIKE 'COMS3%');

2.1.22. Bridging SQL across 3 tiers
Three tier database design
Changing role of DBMS
Indices
Aggregate functions (conceptual)

Over bags and sub-bags
Creating and updating views (ext)
SQL embedding

In this subsection we look at the different roles SQL play across the three tiers of database design. We
discuss the areas in which SQL is lacking and how those difficiencies can be complemented by 
embedding SQL in other languages.

2.1.25. Indices
Low/Internal level
Index by one attribute
For queries selecting by that attribute:



Databases http://www.lightenna.com/book/export/s5/101

37 of 84 25-2-07 4:23 pm

Faster tuple access (ordered tuples)
Reduces database memory load

Small cross product relation, only crosses requisites
Accelerates query resolution time

CREATE INDEX Index_Name ON RELATION(Attribute);

2.1.26. Aggregate functions
Run over groups of tuples
Takes a projected attribute list as an argument
Produce relation with single tuple
SUM, MAX, MIN, AVG, COUNT
e.g. AggFunc over all tuples

SELECT SUM(SALARY), MAX(SALARY), MIN(SALARY)
FROM EMPLOYEE;

Single attribute lists (distinct values)
Multi-attribute lists (granularity of distinct values by pairing)

2.1.27. Aggregates over sub-bags
Can run over subsets of tuples
GROUP BY keyword
Specifies the grouping attributes
Need to also appear in projected attr_list
Show result along side value for group attr
e.g. AggFunc over subgroups

SELECT dno, COUNT(*)
FROM employee
GROUP BY dno

Quick SQL check, do all attributes in the SELECT projection list appear in the GROUP BY projection 
list.

2.1.28. Creating views
Views are partial projections
Virtual relations, or views of live relations
Update synchronised

CREATE VIEW <virtual_relname>
AS <real_relation>

Real relation could be a query result
Clever bit is the change propagation
UPDATEs made to the view dataset are flooded back to relations

INSERT and DELETE behaviour needs to be defined
Non-trivial as INSERT into view (virtual relation) may leave holes in real relation

2.1.29. Embedding SQL



Databases http://www.lightenna.com/book/export/s5/101

38 of 84 25-2-07 4:23 pm

SQL (alone) can do lots of clever things in one expression
But can only execute a single expression
Can structure SQL commands into proper programming languages
Java Database Connection (JDBC)

javac, then java VM
COBOL, C or PASCAL

precompiled with PRO*COBOL or PRO*C
Procedure Language (PL/SQL)

Oracle/MySQL procedural language
Stored procedures can take parameters

2.2. Internals
In this lecture we look at...
[Section notes PDF 180Kb]

2.2.01. Introduction
Database internals (base tier)
RAID technology

Reliability and performance improvement
Record and field basics
Headers to hashing
Index structures

2.2.01b. Machine architecture (by distance)
Distance from chip determines minimum latency
Speed of light is a constant
Impact of bus frequencies

IDE (66,100,133 Hz)
PCI, PCI-X (66,100,133 Hz)
PCI Express (1Ghz to 12Ghz)

Impact of bus bandwidths
PCI (32/64 bit/cycle, 133MB/s)
PCI Express (x16 8.0GB/s)



Databases http://www.lightenna.com/book/export/s5/101

39 of 84 25-2-07 4:23 pm

Here's a link from Intel showing a machine architecture with signal bandwidths: Intel diagram

2.2.01c. Machine architecture (by capacity)
Capacity increased with distance
Staged architecture as compromise
Speed, time/distance
Also cost, heat, usage scale

2.2.02. Database internals
Stored as files of records (of data values)

Auxiliary data structures/indices
1y and 2y storage

memory hierarchy (pyramid diagram)
volatility

Online and offline devices
Primary file organisation, records on disk

Heap - unordered
Sorted - ordered, sequential by sort key
Hashed - ordered by hash key
B-trees - more complex



Databases http://www.lightenna.com/book/export/s5/101

40 of 84 25-2-07 4:23 pm

2.2.03. Disk fundamentals
DBMS task

linked to backup
1y, 2y and 3y

e.g. DLT tape
Changing face of current technology

Impact of inexpensive harddisks
Flash memory devices (CF, USB)

Random versus sequential access
Latency (rotational delay) and
Bandwidth (data transfer rate)

2.2.04. RAID technology
Redundant Array of Independent Disks
Data striping

Blocks (512 bytes), bits and transparency
Reliability (1/n)

Mirroring/shadowing
Error correction codes/parity

Performance (n)
Mirroring (2x read access)
Multiple parallel access

2.2.05. RAID levels
0 No redundant data
1 Disk mirrors (performance gain)
2 Hamming codes (also detect)
3 Single parity disk
4 Block level striping
5 and parity/data distribution
6 Reed-Soloman codes

2.2.06. Records and fields
DBMS specific, generally
Records (tuples) comprise fields (attributes)
File is a sequence of records
Variable length records

Variable length fields
Multi-valued attributes/repeating fields
Optional fields
Mixed file of different record types

2.2.07. Fields



Databases http://www.lightenna.com/book/export/s5/101

41 of 84 25-2-07 4:23 pm

records -> files -> disks
Fixed length for efficient access
Networking issues
Delimit variable length fields (max)
Explicit record/field lengths
Separators (,;,:,$,?,%)
Record headers and footers
Spanning

block boundaries and redundancy

2.2.08. Primary organisation
Bias data manipulation to 1y memory

Load record to 1y, write back
Cache theorem

Data storage investment, rapidity of access
optimisations based on frequent algorithmic use

Ordering, ordering field/key field
Hashing

2.2.09. Indexes/indices
Auxiliary structures/secondary access path
Single level indexes (Key, Pointer)
File of records
Ordering key field
Primary, Secondard and Clustering

2.2.09b. Primary index example
Primary index on simple table
Ordering key field (primary key) is Integer
Pointers as addresses
Sparse, not dense

2.2.10. Primary Index file (as pairs list)



Databases http://www.lightenna.com/book/export/s5/101

42 of 84 25-2-07 4:23 pm

Two fields <K(i),P(i)>
Ordering key field and pointer to block
Second example, indexing candidate key Surname

K(1)="Barnes",P(1) -> block 1
Barnes record is first/anchor entry in block 1

K(2)="Smith",P(2) -> block 6
K(3)="Zeta",P(3) -> block 8

Dense (K(i) for every record), or Sparse
Enforce key constraint

2.2.10b. Clustering index example
Clustering index
Ordering key field (OKF) is non-key
Each entry points to multiple records

2.2.11. Clustering Index (as pairs list)
Two fields <K(i),P(i)>
Ordering non-key field and pointer to block

Internal structure e.g. linked list of records
Each block may contain multiple records

K(1)="Barnes",P(1) -> block 1
K(2)="Bates",P(2) -> block 2
K(3)="Zeta",P(3) -> block 3

K(i) not required to have
a distinct value for each record
non-dense, sparse

2.2.11b. Secondary Index example
Independent of primary ordering
Can't use block anchors
Needs to be dense



Databases http://www.lightenna.com/book/export/s5/101

43 of 84 25-2-07 4:23 pm

2.2.12. More indices
Single level index

ordered index file
limited by binary search

Multi level indices
based on tree data structures (B+/B-trees)

faster reduction of search space (logfobi)

2.2.13. Indices
Database architecture

Intension/extension
Indexes separated from data file

Created/disgraded dynamically
Typically 2y to avoid reordering records on disk

2.2.14. Query optimisation
Faster query resolution

improved performance
lower load
hardware cost:performance ratio

Moore's law
Query process chain
Query optimisation

2.2.15. Query processing
Compile-track familiarity

Scanner/tokeniser - break into tokens
Parser - semantic understanding, grammar
Validated - check attribute names

Query tree
Execution strategy, heuristic

Query optimisation
In (extended relational) canonical algebra form



Databases http://www.lightenna.com/book/export/s5/101

44 of 84 25-2-07 4:23 pm

2.2.16. Query optimisation
SQL query

SELECT lname, fname
FROM employee
WHERE salary > (

SELECT MAX(salary)
FROM employee
WHERE dno=5

);
Worst-case

Process inner for each outer
Best-base
Canonical algrebraic form

2.2.16b. Query optimisation implementation
Indexing accelerates query resolution
Closed comparison (intra-tuple)

all variables/attributes within single tuple
e.g. x < 100

Open comparison (inter-tuple)
variables span multiple tuples

Essentially a sorting problem
Internal sorting covered (pre-requisites)
Need external sort for non-cached lists

2.2.17. Query optimisation
External sorting

Stems from large disk (2y), small memory (1y)
Sort-merge strategy

Sort runs (small sets of total data file)
Then merge runs back together

Used in
SELECT, to accelerate selection (by index)
PROJECT, to eliminate duplicates
JOIN, UNION and INTERSECTION

3. Database Design
This is the Database Design course theme.
[Complete set of notes PDF 295Kb].

3.1. Functional Dependency
In this lecture we look at...



Databases http://www.lightenna.com/book/export/s5/101

45 of 84 25-2-07 4:23 pm

[Section notes PDF 64Kb]

3.1.01. Introduction
What is relational design?

Notion of attribute distribution
Conceptual-level optimisation

How do we asses the quality of a design?

3.1.02. Value in design
Allocated arbitrarily by DBD under ER/EER
Goodness at

Internal/storage level (base relations only)
Reducing nulls - obvious storage benefits /frequent
Reducing redundancy - for efficient storage/anomalies

Conceptual level
Semantics of the attributes /single entity:relation
No spurious tuple generation /no match Attr,-PK/FK

3.1.03. Initial state
Database design
Universal relation

R = {A1, A2, …, An}
Set of functional dependencies F

Decompose R using F to
D = {R1, R2, …, Rn}
D is a decomposition of R under F

3.1.05. Aims
Attribute preservation

Union of all decomposed relations = original
Lossless/non-additive join

For every extension, total join of r(Ri) yeilds r(R)
no spurious/erroneous tuples

3.1.06. Aims (also)
Dependency preservation

Constraints on the database
X  Y in F of R, appears
directly in Ri

Attributes X È Y all
contained in Ri



Databases http://www.lightenna.com/book/export/s5/101

46 of 84 25-2-07 4:23 pm

Each relation Ri in 3NF

But what’s a dependency?

3.1.07. Functional dependency
Constraint between two sets of attributes

Formal method for grouping attributes
DB as one single universal relation/-literal

R = {A1,A2,…,An}
Two sets of attributes, X Í
R,Y Í R

Functional dependency (FD or f.d.) X 
face=Arial> Y

If t1[X] = t2[X], then t1[Y] = t2[Y]
Values of the Y attribute depend on value of X
X functionally determines Y, not reverse necessarily

3.1.08. Dependency derivation
Rules of inference
reflexive: if X Ê Y then X 
face=Symbol>® Y
augment: {X  Y} XZ 
face=Symbol>® YZ
transitive: {X  Y,Y 
face=Symbol>® Z} X 
face=Arial> Z

Armstrong demonstrated complete
for closures

3.1.09. Functional dependency
If X is a key (primary and/or candidate)

All tuples ti have a unique value for X
No two tuples (t1,t2) share a value of X

Therefore X  Y
For any subset of attributes Y

Examples
SSN  {Fname, Minit, Lname}
{Country of issue, Driving license no} 
face=Arial> SSN
Mobile area code  Mobile
network (not anymore)



Databases http://www.lightenna.com/book/export/s5/101

47 of 84 25-2-07 4:23 pm

3.1.10. Process
Typically start with set of f.d., F

determined from semantics of attributes
Then use IR1,2,3 to infer additional f.d.s
Determine left hand sides (Xs)

Then determine all attributes dependent on X
For each set of attributes X,

determine X+ :the set of attributes f.d’ed by X on F

3.1.11. Algorithm
Compute the closure of X under F: X+

xplus = x;
do

oldxplus = xplus;
for (each f.d. Y  Z in F)

if (xplus Ê Y) then xplus
= xplus È Z;

while (xplus = = oldxplus);

3.1.12. Function dependency
Consider a relation schema R(A,B,C,D) and a set F of functional
dependencies

Aim to find all keys (minimal superkeys),
by determining closures of all possible X subsets of R’s attributes,
e.g.

A+, B+, C+, D+,
AB+, AC+, AD+, BC+, BD+, CD+
ABC+, ABD+, BCD+
ABCD+

3.1.13. Worked example
Let R be a relational schema R(A, B, C, D)
Simple set of f.d.s
AB  C, C 
face=Symbol>® D, D 
face=Arial> A
Calculate singletons

A+, B+, C+, D+,
Pairs



Databases http://www.lightenna.com/book/export/s5/101

48 of 84 25-2-07 4:23 pm

AB+, AC+,…
Triples

and so on

3.1.14. Worked example
Compute sets of closures

AB  C, C 
face=Symbol>® D, D 
face=Arial> A

1. Singletons
A+  A
B+  B
C+  CDA
D+  AD

Question: are any singletons superkeys?

3.1.15. F.d. closure example
2. Pairs (note commutative)

AB+  ABCD
AC+  ACD
AD+  AD
BC+  ABCD
BD+  ABCD
CD+  ACD

Superkeys?

3.1.16. F.d. closure example
3. Triples

ABC+  ABCD
ABD+  ABCD
BCD+  ABCD

Keys?

4. Quadruples



Databases http://www.lightenna.com/book/export/s5/101

49 of 84 25-2-07 4:23 pm

ABCD+  ABCD

3.1.17. F.d. closure summary
Superkeys:

AB, BC, BD, ABC, ABD, BCD, ABCD
Minimal superkeys (keys)

AB, BC, BD

3.2. Normal Forms
In this lecture we look at...
[Section notes PDF 121Kb]

3.2.01. Orthogonal design
Information Principle:

The entire information content of the database is represented in one
and only one way, namely as explicit values in column positions in
tables

Implies that two relations cannot have the same meaning
unless they explicitly have the same design/attributes (including
name)

3.2.02. Normalization
Reduced redundancy
Organised data efficiently
Improves data consistency

Reduces chance of update anomalies
Data duplicated, then updated in only one location

Only duplicate primary key
All non-key data stored only once

Data spread across multiple tables, instead of one Universal relation R

3.2.03. Good or bad?
Depends on Application
OLTP (Transaction processing)

Lots of small transactions
Need to execute updates quickly

OLAP (Analytical processing/DSS)
Largely Read-only
Redundant data copies facilitate Business Intellegence applications,
e.g. star schema (later)

3NF considered ‘normalised’



Databases http://www.lightenna.com/book/export/s5/101

50 of 84 25-2-07 4:23 pm

save special cases

3.2.04. Normal forms (1NF)
First Normal form (1NF)

Disallows multivalued attributes
Part of the basic relational model

Domain must include only atomic values
simple, indivisible

Value of attribute-tuple in extension of schema
t[Ai] Î dom(Ai)

3.2.05. Normalisation (1NF)
Remove fields containing comma separated lists
Multi-valued attribute (AMV) of Ri
Create new relation (RNEW)

with FK to Ri[PK]
RNEW(UID, AMV, FKI)

3.2.06. Normalisation (1NF)
On weak entity

On strong entity

3.2.07. Normal forms (2NF)
A relation Ri is in 2NF if:

Every nonprime attribute A in Ri is
fully functionally dependent on 1y key of R



Databases http://www.lightenna.com/book/export/s5/101

51 of 84 25-2-07 4:23 pm

If all keys are singletons, guaranteed

If Ri has composite key are
all non-key attributes fully functionally dependent
on all attributes of composite key?

3.2.08. Normal forms (2NF)
Second normal form (2NF)

Full functional dependency X 
face=Arial> Y

A Î X, (X - {A}) �Y

If any attribute A is removed from X
Then X  Y no longer holds

Partial functional dependency
A Î X, (X - {A}) 
face=Symbol>® Y

3.2.09. Normal forms (2NF)
In context

Not 2NF: AB 
face=Arial> C, A  C

AB  C is not in 2NF,
because B can be removed

Not 2NF: AB  CDE, B 
face=Symbol>® DE

because attributes D&E are dependent on part of the composite key
(B of AB), not all of it

3.2.10. Normalisation (2NF)
Split attributes not depended on all of the primary key into separate relations



Databases http://www.lightenna.com/book/export/s5/101

52 of 84 25-2-07 4:23 pm

3.2.11. Normal forms (BCNF)
Boyce-Codd Normal form (BCNF)

Simpler, stricter 3NF
BCNF  3NF
3NF does not imply BCNF

nontrivial functional dependency X 
face=Arial> Y
Then X must be a superkey

3.2.12. Normal forms (3NF)
Third Normal form (3NF)
Derived/based on transitive dependency
For all nontrivial functional dependencies
X 
face=Arial> A
Either X must be a superkey
Or A is a prime attribute
(member of a key)

3.2.13. Normal forms in context
AB  C, C 
face=Symbol>® D, D 
face=Arial> A
In context

3NF? Yes
Because AB is a superkey and
D and A are prime attributes

BCNF? No
Because C and D are not superkeys
(even though AB is)

3.2.14. Normalisation (3NF)
CarMakes not in 3NF because:

singleton key A
non-trivial fd B  C

B not superkey, C not prime attribute



Databases http://www.lightenna.com/book/export/s5/101

53 of 84 25-2-07 4:23 pm

3.3. OODB
In this lecture we look at...
[Section notes PDF 34Kb]

3.3.01. Introduction
Database architectures, beyond
Why OODBMS?
ObjectStore
CORBA object distribution standard

3.3.02. Large DBMS
Complex entity fragmentation

across many relations
Breaks the miniworld-realworld dichotomy
Requires conceptual abstracting layer
Difficult to retrieve all information for x
Compounded by version control

3.3.03. Object orientation
Object components (icv triples)

Object Identity (OID), I
replaces primary key

Type constructor, c
how the object state is constructed from sub-comp
e.g. atom, tuple (struct), set, list, bag, array

Object state, v
Object behaviour/action

3.3.04. Desirable features
Encapsulation

Abstract data types



Databases http://www.lightenna.com/book/export/s5/101

54 of 84 25-2-07 4:23 pm

Information hiding
Object classes and behavior

Defined by operations (methods)
Inheritance and hierarchies
Strong typing (no illegal casting)

don’t think about inheritance just yet

3.3.05. Desirable features
Persistence

Objects exist after termination
Naming and reachability mechanism
Late binding in Java

Performance
user-def functions executed on server, not client

Extension into relational model
Domains of objects, not just values
Domain hierarchies etc.

3.3.06. Desirable features
Polymorphism

aka. operator overloading
same method name/symbol
multiple implementations

Easy link to Programming languages
popular OO language like Java/C++
Better than PL/SQL integration
Much better than PL-JDBC integration!

Highly suitable for multimedia data

3.3.07. Undesirable features
Object Ids

Artificial Real-Mini, double edged sword
Exposes inner workings (suspended abstraction)

Lack of integrity constraints
No concept of normalisation/forms
Extreme encapsulation

e.g. creation of many accessor/mutator methods
Lack of (better) standardisation

3.3.08. More undesirables
Originally no mechanism for specifying
relationships between objects
In RDBMS – relationships are tuples
In OODBMS – relationships should be properties of objects



Databases http://www.lightenna.com/book/export/s5/101

55 of 84 25-2-07 4:23 pm

3.3.09. ObjectStore
Packages supporting Java or C++
C++ package uses:

C++ class definition for DDL
insert(e), remove(e) and create collections, for DML

Bidirectional relationship facility
Persistency transparency

Identical pointers to persistent and transient objects

3.3.10. CORBA
Common Object Request Broker Architecture
Object communication (unifying paradigm)

Distributed
Heterogeneous
Network, OS and language transparency

Java implementation org.omg.CORBA
Also C, C++, ADA, SMALLTALK

3.4. Type Inheritance and EER diagrams
In this lecture we look at...
[Section notes PDF 117Kb]

3.4.01. Introduction
Design/schema side (Entity types)
Object-orientated concepts

Java, C++ or UML
Sub/superclasses and inheritance

EER diagrams
EER to Relational mapping

3.4.02. OO
Inheritance concept

Attributes (and methods)
Subtypes and supertypes
Specialisation and Generalisation
ER diagrams

show entities/entity sets
EER diagrams

show type inheritance

additional 8th step to ER->Relational mapping



Databases http://www.lightenna.com/book/export/s5/101

56 of 84 25-2-07 4:23 pm

3.4.03. Objects
Basic guide to Java
Object, classes as blueprints
Object, collection of methods and attributes
Miniworld model of real world things
Object, entity in database terms

3.4.04. Abstract
Similar objects
Car Park example
Student example
Shared properties/attributes
Generalisation
Reverse, specialisation

3.4.05. Relationships
Using English as model
‘Is a’ (inheritance)
‘Has a’ (containment)
Nouns as objects
Verbs as methods
Adjectives as variables (sort of)

3.4.06. Classes
Superclasses (Student)
Subclasses (Engineer, Geographer, Medic)
Inheritance
Subclass inherits superclass attributes

Union of specific/local and general attributes
Inheritance chains

Person -> Student -> Engineer -> Computer Scientist

3.4.07. EER Fruit example
Partial participation
Disjoint subclasses
A fruit may be either a pear or an apple or a banana, or none of them. A fruit may not be a pear and 
a banana, an apple and a banana, an apple and a pear....



Databases http://www.lightenna.com/book/export/s5/101

57 of 84 25-2-07 4:23 pm

3.4.08. EER Wine example
Total, disjoint
Equivalent to Java Abstract classes
A Wine has to be either Red, White or Rosé cannot be both more

3.4.09. More extended (EER)
Specialisation lattices

and Hierarchies
Multiple inheritance
Union of two superclasses (u in circle)
In addition to basic ER notation

3.4.10. EER diagramatic notation
Subset symbol to illustrate
sub/superclass relationship
direction of relationship
Circle to link super to subclasses

Disjoint
Overlapping
Union

3.4.11. Disjointness constraint
Disjointness (d in circle) – single honours



Databases http://www.lightenna.com/book/export/s5/101

58 of 84 25-2-07 4:23 pm

Overlapping (o in circle) – joint honours/sports
Membership condition on same attribute

attribute-defined specialisation
defining attribute
implies disjointness

versus user-defined
each entity type specifically defined by user

3.4.12. Completeness constraint
Total specialisation

Every entity in the superclass must be a member of atleast 1 subclass
Double line (as ER)

Partial specialisation
Some entites may belong to atleast 1 subclass, or none at all
Single line

Yields 4 possibilities
(Total-Dis, Total-Over, Partial-Dis, Partial-Over)

3.4.13. EER Chip example
Total, overlapping
A Chip may has to be at least one of FPA Unit, Reg Block, L1 Cache, and may be more than one 
type

3.4.14. EER Multiple inheritance
Type hierarchies
Specialisation lattices
Well, sir, the Supreme Court of the United States has determined that the tomato is for legal and 
commercial purposes both a fruit and a vegetable. So we can legally refer to tomato juice as 
'vegetable' juice.



Databases http://www.lightenna.com/book/export/s5/101

59 of 84 25-2-07 4:23 pm

Candice, General Foods

3.4.15. EER to Relational Mapping
Initially following 7 ER stages
Stage 8
4 different options

Optimal solution based on problem
Let C be superclass, S1…m subclasses

3.4.16. Stage 8
Create relation for C, and relations for S1..m each with a foreign key to C(primary key)
Create relations for S1..m each including all attributes of C and its primary key

3.4.17. Stage 8
Create a single relation including all attributes of C u S1..m and a type/discriminating attribute

only for disjoint subclasses
Create a single relation as above, but include a boolean type flag for each subclass

works for overlapping, and also disjoint

3.5. System Design
In this lecture we look at...
[Section notes PDF 64Kb]

3.5.01. Databases in Application
Where’s the data?
Programmer driven future
OODBMS limitations
RDBMS longevity



Databases http://www.lightenna.com/book/export/s5/101

60 of 84 25-2-07 4:23 pm

System design by
Data store, delivery, interface

Case study

3.5.02. Where’s the data?
Previously covered distance from User to Data (and reason for it)
Client-Server data model creates DBMS

P2P alternative
Accountability
Distribution (BitTorrent, eDonkey)
Caching

3.5.03. Where’s the data?
Answer: everywhere
But where is it meaningful?
Answer: for whom?

Quality paradigm
Large projects require large teams

Team overhead (ref 2nd year)
Code responsibilities
Data/data model resp.
Object responsibilities

3.5.04. Web application data support
Web application programming
Goal, dynamically produced XHTML
Client side designer-programmer split

CSS, XHTML
Server side programmer-programmer split

Old school: query design, integrator
New school: MVC (Model-View-Controller)

Controller – user input
Model – modelling of external world
View – visual feedback



Databases http://www.lightenna.com/book/export/s5/101

61 of 84 25-2-07 4:23 pm

3.5.05. CMS
Content Management System
part of other courses
CMS is a DBMS
Zope/Plone and ZODB
e107, Drupal and Seagull
Zend MVC Framework (pre-beta)

3.5.06. OODBMS limitations
Future unknown
RDBMS supports

Application data sharing
Physical/logical data independence/views
Concurrency control
Constraints

at inception these requirements not known
RDBMS mathematical basis à
extensible
Crude Type Inheritance (see EER mapping)
OODBMS as construction kit



Databases http://www.lightenna.com/book/export/s5/101

62 of 84 25-2-07 4:23 pm

3.5.07. Weaknesses in RDBMS
Data type support
Unwieldy, created 3VL (nulls)
Type Inheritance and Relationships
Tuple:Entity fragmentation

not to be confused with ‘fragmentation’
Entity approximation requires joins

3.5.08. System design
Client specifications
Variance amongst Mobile devices
Rich-media Content delivery
Where’s the data? (M – media database)
Where’s it going? (C – mobile browser)
How’s it going to get there? (query design)
What’s it going to look like? (V – XHTML)

3.5.09. Muddy boots
The real world of databases
Massive Excel spreadsheets
Access Migration
Normalisation
Update implications
Visual language of the Internet limitations
Future of browser components

4. Distributed systems
This is the Distributed systems course theme.

[Complete set of notes PDF 109Kb]

4.1. Transaction
In this lecture we look at...
[Section notes PDF 86Kb]

4.1.01. Distributed Databases
Transactions
Unpredictable failure

Commit and rollback



Databases http://www.lightenna.com/book/export/s5/101

63 of 84 25-2-07 4:23 pm

Stored procedures
Brief PL overview

Cursors

4.1.02. Transactions
Real world database actions
Rarely single step
Flight reservation example

Add passenger details to roster
Charge passenger credit card
Update seats available
Order extra vegetarian meal

4.1.03. Transactions
Real world database actions
Rarely single step
Flight reservation example

Add passenger details to roster
Charge passenger credit card
Update seats available
Order extra vegetarian meal

4.1.04. Desirable properties of transactions
ACID test
Atomicity

transaction as smallest unit of processing
transactions complete entirely or not at all

consequences of partial completion in flight example

Consistency
complete execution preserves database constrained state/integrity
e.g. Should a transaction create an entity with a foreign key then the
reference entity must exist (see 4 constraints)

4.1.05. ACID test continued
Isolation

not interfered with by any other concurrent transactions



Databases http://www.lightenna.com/book/export/s5/101

64 of 84 25-2-07 4:23 pm

Durable (permanency)
commited changes persist in the database, not vulernable to failure

4.1.06. Commit
Notion of Commit (durability)
Transaction failures

From flight reservation example
Add passenger details to roster
Charge passenger credit card
Update seats available: No seats remaining
Order extra vegetarian meal

Rollback

4.1.07. PL/SQL overview
Language format

Declarations
Execution
Exceptions
Handling I/O
Functions
Cursors

4.1.08. PL/SQL
Blocks broken into three parts

Declaration
Variables declared and initialised

Execution
Variables manipulated/actioned

Exception
Error raised and handled during exec

4.1.09. Declaration
DECLARE

age NUMBER;
name VARCHAR(20);
surname employee.fname%TYPE;
addr student.termAddress%TYPE;

4.1.10. Execution
BEGIN (not in order)



Databases http://www.lightenna.com/book/export/s5/101

65 of 84 25-2-07 4:23 pm

/* sql_statements */
UPDATE employee SET salary = salary+1;

/* conditionals */
IF (age < 0) THEN

age: = 0;
ELSE

age: = age + 1;
END IF;

/* transaction processing */
COMMIT; ROLLBACK;

/* loops */ /* cursors */
[END;] (if no exception handling)

4.1.11. Exception passing
Beginnings of PL I/O
CREATE TABLE temp (logmessage varchar(80));

Can create transfer/bridge relation outside

Within block (e.g. within exception handler)
WHEN invalid_age THEN

INSERT INTO temp VALUES( ‘Cannot have negative ages’);
END;

SELECT * FROM temp;
To review error messages

4.1.12. Exception handling
DECLARE

invalid_age exception;

BEGIN
IF (age < 0) THEN

RAISE invalid_age
END IF;

EXCEPTION



Databases http://www.lightenna.com/book/export/s5/101

66 of 84 25-2-07 4:23 pm

WHEN invalid_age THEN
INSERT INTO temp VALUES( ‘Cannot have negative ages’);

END;

4.1.13. Cursors
Cursors

Tuple by tuple processing of relations
Three phases (two)

Declare
Use
Exception (as per normal raise)

4.1.14. Impact
PL blocks coherently change database state
No runtime I/O
Difficult to debug
SQL tested independently

4.1.15. PL Cursors
DECLARE
name_attr EMPLOYEE.NAME%TYPE;
ssn_attr EMPLOYEE.SSN%TYPE;
/* cursor declaration */
CURSOR myEmployeeCursor IS

SELECT NAME,SSN FROM EMPLOYEE
WHERE DNO=1
FOR UPDATE;

emp_tuple myEmployeeCursor%ROWTYPE;

4.1.16. Cursors execution
BEGIN
/* open cursor */
OPEN myEmployeeCursor;
/* can pull a tuple attributes into variables */
FETCH myEmployeeCursor INTO name_attr,ssn_attr;
/* or pull tuple into tuple variable */
FETCH myEmployeeCursor INTO emp_tuple;
CLOSE myEmployeeCursor;

[LOOP…END LOOP example on handout]



Databases http://www.lightenna.com/book/export/s5/101

67 of 84 25-2-07 4:23 pm

4.1.17. Introduction
Concurrent transactions
Distributed databases (DDB)
Fragmentation
Desirable transaction properties
Concurrency control techniques

Locking
Timestamps

4.1.18. Notation
Language

PL too complex/long-winded
Simplified database model

Database as collection of named items
Granularity, or size of data item
Disk block based, each block X

Basic transaction language (BTL)
read_item(X);
write_item(X);
Basic algebra, X=X+N;

4.1.19. Transaction processing
DBMS Multiuser system

Multiple terminals/clients
Single processor, client side execution

Single centralised database
Multiprocessor, server
Resolving many transactions simultaneously

Concurrency issue
Coverage by previous courses (e.g. COMS12100)
PL/SQL scripts (Transactions) as processes

Interleaved execution

4.1.20. Transactions
Two transactions, T1 and T2
Overlapping read-sets and write-sets
Interleaved execution
Concurrency control required
PL/SQL example

Commit; and rollback;

4.1.21. Concurrency issues



Databases http://www.lightenna.com/book/export/s5/101

68 of 84 25-2-07 4:23 pm

Three potential problems
Lost update
Dirty read
Incorrect summary

All exemplified using BTL
Transaction diagrams to make clearer
C-like syntax for familiarity
Many possible examples of each problem

4.1.22. Lost update
T1
read_item(X);
X=X-N;

write_item(X);
read_item(Y);

Y=Y+N;
write_item(Y);
T2

read_item(X);
X=X+M;

write_item(X);



Databases http://www.lightenna.com/book/export/s5/101

69 of 84 25-2-07 4:23 pm

4.1.23. Dirty read (or Temporary update)
T1
read_item(X);
X=X-N;
write_item(X);

<T1 fails>
<T1 rollback>

read_item(X);
X=X+N;
write_item(X);
T2

read_item(X);
X=X+M;
write_item(X);

4.1.24. Incorrect summary
T1

read_item(X);
X=X-N;
write_item(X);



Databases http://www.lightenna.com/book/export/s5/101

70 of 84 25-2-07 4:23 pm

read_item(Y);
Y=Y-N;
write_item(Y);
T2
sum=0;
read_item(A)
sum=sum+A;

read_item(X);
sum=sum+X;
read_item(Y);
sum=sum+Y;

4.1.25. Serializability
Schedule S is a collection of transactions (Ti)
Serial schedule S1

Transactions executed one after the other
Performed in a serial order
No interleaving
Commit or abort of active transaction (Ti) triggers
execution of the next (Ti+1)
If transactions are independent

all serial schedules are correct

4.1.26. Serializability
Serial schedules/histories

No concurrency
Unfair timeslicing

Non-serial schedule S2 of n transactions
Serializable if

equivalent to some serial schedule of the same n transactions
correct



Databases http://www.lightenna.com/book/export/s5/101

71 of 84 25-2-07 4:23 pm

n! serial schedules, more non-serial

4.1.27. Distribution
DDB, collection of

multiple logically interrelated databases
distributed over a computer network
DDBMS

Multiprocessor environments
Shared memory
Shared disk
Shared nothing

4.1.28. Advantages
Distribution transparency

Multiple transparency levels
Network
Location/dept autonomy
Naming
Replication
Fragmentation

Reliability and availability
Performance, data localisation
Expansion

4.1.29. Fragmentation
Breaking the database into

logical units
for distribution (DDB design)

Global directory to keep track/abstract
Fragmentation schema/allocation schema

Relational
Horizontal

Derived (referential), complete (by union)
Vertical
Hybrid

4.1.30. Concurrency control in DDBs
Multiple copies
Failure of individual sites (hosts/servers)
Failure of network/links



Databases http://www.lightenna.com/book/export/s5/101

72 of 84 25-2-07 4:23 pm

Transaction processing
Distributed commit
Deadlock

Primary/coordinator site - voting

4.1.31. Distributed commit
Coordinator elected
Coordinator prepares

writes log to disk, open sockets, sends out queries
Process

Coordinator sends ‘Ready-commit’ message
Peers send back ‘Ready-OK’
Coordinator sends ‘Commit’ message
Peers send back ‘Commit-OK’ message

4.1.32. Query processing
Data transfer costs of query processing

Local bias
High remote access cost
Vast data quantities to build intermediate relations

Decomposition
Subqueries resolved locally

4.1.33. Concurrency control
Must avoid 3+ problems

Lost update, dirty read, incorrect summary
Deadlock/livelock - dining example

Data item granularity
Solutions

Protocols, validation
Locking
Timestamps

4.1.34. Definition of terms
Binary (two-state) locks
locked, unlocked associated with item X
Mutual exclusion
Four requirements

Must lock before access
Must unlock after all access
No relocking of already locked
No unlocking of already unlocked



Databases http://www.lightenna.com/book/export/s5/101

73 of 84 25-2-07 4:23 pm

4.1.35. Definition
Multiple mode locking
Read/write locks
aka. shared/exclusive locks
Less restrictive (CREW)
read_lock(X), write_lock(X), unlock(X)

e.g. acquire read/write_lock
not reading or writing the lock state

4.1.36. Rules of Multimode locks
Must hold read/write_lock to read
Must hold write_lock to write
Must unlock after all access
Cannot upgrade/downgrade locks

Cannot request new lock while holding one

Upgrading permissable (read lock to write)
if currently holding sole read access

Downgrading permissable (write lock to read)
if currently holding write lock

4.2. Concproto
In this lecture we look at...
[Section notes PDF 37Kb]

4.2.01. Introduction
Concurrency control protocols
Concurrency techniques

Locks, Protocols, Timestamps
Multimode locking with conversion

Guarenteeing serializability
Associated cost
Timestamps and ordering

4.2.02. Guarenteeing serializability



Databases http://www.lightenna.com/book/export/s5/101

74 of 84 25-2-07 4:23 pm

Two phase locking protocol (2PL)
Growing/expanding

Acquisition of all locks
Or upgrading of existing locks

Shrinking
Release of locks
Or downgrading

Guarentees serializability
equivalency without checking schedules

4.2.03. A typical transaction pair
T1

read_lock(Y);
read_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X=X+Y;
write_item(X);
unlock(X);

4.2.04. 2PL: Guaranteed serializable
T1

read_lock(Y);
read_item(Y);
write_lock(X);
unlock(Y);
read_item(X);
X=X+Y;
write_item(X);
unlock(X);

4.2.05. Guarantee cost



Databases http://www.lightenna.com/book/export/s5/101

75 of 84 25-2-07 4:23 pm

T2 ends up waiting for read access to X
Either after T1 finished

T1 cannot release X even though it has finished using it
Incorrect phase (still expanding)

Or before T1 has used it
T1 has to claim X during expansion, even if it doesn’t use
it until later

Cost: limits the amount of concurrency

4.2.06. Alternatives
Concurrency control

Locks limit concurrency
Busy waiting

Timestamp ordering (TO)
Order transaction execution

for a particular equivalent serial schedule
of transactions ordered by timestamp value

Note: difference to lock serial equivalent
No locks, no deadlock

4.2.07. Timestamps
Unique identifier for transaction (T)
Assigned in order of submission

Time
linear time, current date/sys clock - one per cycle

Counter
counter, finite bitspace, wrap-around issues

Timestamp aka. Transaction start time
TS(T)

4.2.08. Timestamping
DBMS associates two TS with each item

Read_TS(X): gets read timestamp of item X
timestamp of most recent successful read on X
= TS(T) where T is youngest read transaction

Write_TS(X): gets write timestamp of item X
as for read timestamp



Databases http://www.lightenna.com/book/export/s5/101

76 of 84 25-2-07 4:23 pm

4.2.09. Timestamping
Transaction T issues read_item(X)

TO algorithm compares TS(T) with Write_TS(X)
Ensures transaction order execution not violated

If successful, Write_TS(X) <=
TS(T)

Read_TS(X) = MAXTS(T), current Read_TS(X)
If fail, Write_TS(X) > TS(T)

T aborted, rolled-back and resubmitted with new TS
Cascading rollback

4.2.10. Timestamping
Transaction T issues write_item(X)

TO algorithm compares TS(T) with Read_TS(X)
and compares TS(T) with
Write_TS(X)

If successful, op_TS(X) <= TS(T)
Write_TS(X) = TS(T)

If fail, op_TS(X) > TS(T)
T aborted, cascade etc.

All operations focus on not violating the execution order defined by the
timestamp ordering

4.2.11. Updates
Insertion

2PL: DBMS secures exclusive write-lock
TOA: op_TS(X) set to TS(creating transaction)

Deletion
2PL: as insert
TOA: waits to ensure later transactions don’t access

Phantom problem
Record being inserted matches inclusion conditions
of another transaction
(e.g. selection by dno=5)
Locking doesn’t guarantee inclusion 

(need index locking)

5. Real world



Databases http://www.lightenna.com/book/export/s5/101

77 of 84 25-2-07 4:23 pm

This is the Real world course theme.

[Complete set of notes PDF 206Kb]

5.1. Web
In this lecture we look at...
[Section notes PDF 133Kb]

5.1.01. Databases for the Internet
Path from DB to User
Information flow
Data formats (OO)
Format transitions
Limitations/channel

right now
The Future



Databases http://www.lightenna.com/book/export/s5/101

78 of 84 25-2-07 4:23 pm

5.1.02. OO
Object orientated approach

Consistent/optimised development model
Good approximation of real world
Closer link to mini-world

Java and PHP
DB persistence
UML

5.1.03. Java and PHP in context
Java

JSP (server-side)
Javascript (client-side)

PHP
Server side only

JSON or XML
Object communication

Ideal scenario
Java – load times

5.1.04. In a perfect world
Homogenous data format/data model
DB stores objects instead
Objects transferred

Robust
Lightweight
Fast
Consistent (more later in Transactions)
Caching

5.1.05. In the real world
Heterogenous data model
Object translation/wrappers
Different languages features at different layers
Minimal subset of OO functionality available end-to-end
Going to look at information flow/functionality provided

5.1.06. User
Limitations of being human

short term memory
long term familiarity

language of the Internet



Databases http://www.lightenna.com/book/export/s5/101

79 of 84 25-2-07 4:23 pm

hypertext linking
form filling

Advantages of being human
impatience, no waiting
wants instant response

5.1.07. Browser
Http requests
Forms

Post
Get

Form fields
By name, by ID
Hidden

Javascript/DOM tree

5.1.08. Internet
Communication medium
Good for transferring data
Not good for transforming data
e.g. Light in air
e.g. Signal over CAT5e/UTP cable

5.1.09. Web server
Straight HTML pages
Dynamic HTML pages

PHP example
JSP example

As above with RDBMS integration
PHP PDO example

As above with Objects
PHP DBDO example

5.1.10. load, edit, submit, act timeline



Databases http://www.lightenna.com/book/export/s5/101

80 of 84 25-2-07 4:23 pm

5.1.11. href click, versus form post
Protocol stack
Basic up-down
Shortcuts
Browser cache
Web server

assembled page cache
php object cache

DB optimised queries



Databases http://www.lightenna.com/book/export/s5/101

81 of 84 25-2-07 4:23 pm

5.1.12. Examples from the web
Google Maps

link
Car selector and Dealer locator

link

5.2. Decision Support
In this lecture we look at...
[Section notes PDF 85Kb]

5.2.01. Introduction
Decision support systems (DSS)
Duplicates of live systems, historical archiving
Primarily read-only
Load and refresh operations
Integrity



Databases http://www.lightenna.com/book/export/s5/101

82 of 84 25-2-07 4:23 pm

Assumptions about initial data
Large, indexed, redundancy

5.2.02. DSS Management
Design

Logical
Temporal keys, required to distinquish historical data (since:to
current & during:within interval)

Physical (Hash indexes, Bitmap indexes)
Controlled Redundancy

Synchronisation/update propogation
Synchronous (update driven)
Asynchronous (query driven)

5.2.03. Data Preparation
Extract

pulling from live database system(s)
Cleansing
Transformation and Consolidation

migrating from live or legacy system design 

to DSS design
Load (DSS live/query-able)
Refresh (latest update)

5.2.04. Querying
Boolean expression complexity

heavy WHERE clauses
Join complexity

Normalised databases, many tables
Facts distributed across tables
Joins required to answer complex questions

Function and Analytic complexity
Often require non-DBMS functions
Smaller queries with interleaved code

5.2.05. Data Warehouse
Specific example of DSS
Subject-orientated

e.g. customers/products
Non-volatile

once inserted, items cannot be updated



Databases http://www.lightenna.com/book/export/s5/101

83 of 84 25-2-07 4:23 pm

Time variant
Temporal keys

Accuracy and granularity issues

5.2.06. DB Company organisation
By example

5.2.07. Dimensional Schema
Consider product, customer, sales data
Each sale represents a specific event

when a product was purchased
when a customer bought something
when a sale was recorded

Each can be thought of as an axis

or dimension (3D)
Each occurred at a moment in time (4D)

5.2.08. Star schemae and Hypercubes
Data centralised in ‘fact’ table
Referencing creates star pattern
Dimensions as satellite tables
Normalising creates snowflake schema



Databases http://www.lightenna.com/book/export/s5/101

84 of 84 25-2-07 4:23 pm

5.2.09. Hypercubes
Hypercube is also a multi-processor topology inspired by a 4D shape
Used by Intel’s iPSC/2
Good at certain database operations
e.g. Duplicate removal
MIMD


